Responses of cortical neurons (areas 3a and 4) to ramp stretch of hindlimb muscles in the baboon

1976 ◽  
Vol 39 (3) ◽  
pp. 484-500 ◽  
Author(s):  
J. Hore ◽  
J. B. Preston ◽  
P. D. Cheney

1. A study was made of the response of single cortical units in areas 3a and 4 to electrical stimulation of hindlimb muscle nerves and to ramp stretch of hindlimb muscles in baboons anesthetized with chloralose.2. Stimulation of hindlimb muscle nerves revealed a group I projection primarily to area 3a but with some input into adjacent area. 4. A major group II projection was found in area 4 adjacent to area 3a. A small number of area 3a neurons receive convergence from both group I and group II muscle afferents.3a. On the basis of their response pattern to ramp stretch, units were classified into one of six categories and their cytoarchitectonic location was determined. Units in area 3a had hynamic sensitivities equivalent to that of the primary spindle afferents. Although the discharge of some area 3a neurons also reflected differences in muscle length, most area 3a neurons had low position sensitivities. One unit type in area 3a did not respond to maintained muscle stretch and signaled only velocity of stretch.4. Units in area 4 had position sensitivities equivalent to that of primary and secondary spindle afferents. Although the discharge of some area 4 units reflected different velocities of muscle stretch, these units had dynamic sensitivities similar to those of secondary spindle afferents rather than those of primary afferents. One type of unit in area 4 had no dynamic component to muscle stretch and signaled only muscle length.5. The results demonstrate that there is a transfer of dynamic and position sensitivity from spindle afferents to cortical neurons. Furthermore, data processing has occurred because some units respond only to the steady-state length of muscle, while other units encode only the dynamic phase of stretch. This behavior is different from the responses to ramp stretch of either group I or group II muscle afferents in the baboon.6. The results demonstrate that single units in cerebral cortex can encode the information transmitted to the central nervous system by muscle spindle afferents. The purpose for which this information is used remains undetermined.

1993 ◽  
Vol 70 (5) ◽  
pp. 1805-1810 ◽  
Author(s):  
J. Lafleur ◽  
D. Zytnicki ◽  
G. Horcholle-Bossavit ◽  
L. Jami

1. The aim of the present experiments was to verify whether group II inputs from gastrocnemius medialis (GM) muscle could elicit declining inhibitions similar to those observed during GM contractions in a variety of lumbar motoneurons of the cat spinal cord. Motoneurons were recorded intracellularly in chloralose- or pentobarbitone-anesthetized preparations during electrical stimulation of GM nerve with repetitive trains. 2. With strengths in the group I range, repetitive stimulation evoked the usual Ia excitation in homonymous motoneurons and excitatory postsynaptic potential (EPSP) amplitudes remained constant throughout the stimulation sequence. In synergic plantaris motoneurons lacking an excitatory connection with Ia afferents from GM, the same stimulation, kept at a constant strength throughout the stimulation sequence, elicited rapidly decreasing inhibitory potentials reminiscent of those evoked by GM contractions. 3. In motoneurons of pretibial flexors, quadriceps, and posterior biceps-semitendinosus, the stimulation strength required to observe declining inhibitions resembling those produced by GM contractions was 4-8 times group I threshold, engaging group II in addition to group I fibers. 4. These results show that input from GM group II plus group I afferents can elicit inhibitory effects in a variety of motoneurons. Such observations support the hypothesis that messages from spindle secondary endings and/or nonspecific muscle receptors activated during contraction might contribute to the widespread inhibition caused by GM contractions. 5. Inasmuch as constant input in group II and group I afferents evoked declining inhibitory potentials, the origin of the decline must be central, which suggests that the rapid reduction of contraction-induced inhibitions also depended on a central mechanism.


1987 ◽  
Vol 65 (2) ◽  
pp. 282-293 ◽  
Author(s):  
A. Lundberg ◽  
K. Malmgren ◽  
E. D. Schomburg

Sign in / Sign up

Export Citation Format

Share Document