Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat

1987 ◽  
Vol 58 (2) ◽  
pp. 267-275 ◽  
Author(s):  
R. E. Soodak ◽  
R. M. Shapley ◽  
E. Kaplan

1. The orientation tuning of lateral geniculate nucleus (LGN) neurons and retinal ganglion cells (recorded as S potentials in the LGN) was investigated with drifting grating stimuli. 2. Results were compared with a quantitative model, in which receptive fields were constructed from linear, elliptical Gaussian center and surround subunits, and responses could be predicted to gratings of any spatial frequency at any orientation. 3. The orientation tuning of X and Y retinal ganglion cells and LGN neurons was shown to result from the linear mechanism of receptive-field elongation, as data from these cells could be well fit with this model. 4. The responses of LGN neurons and their input retinal ganglion cells were compared. The orientation tuning of LGN neurons was found to be a reflection of the tuning of their retinal inputs, showing that neither intrageniculate neural interactions nor the corticogeniculate projection play any role in LGN orientation selectivity.

1999 ◽  
Vol 82 (6) ◽  
pp. 3527-3540 ◽  
Author(s):  
W. Martin Usrey ◽  
John B. Reppas ◽  
R. Clay Reid

Retinal ganglion cells and their target neurons in the principal layers of the lateral geniculate nucleus (LGN) of the thalamus have very similar, center-surround receptive fields. Although some geniculate neurons are dominated by a single retinal afferent, others receive both strong and weak inputs from several retinal afferents. In the present study, experiments were performed in the cat that examined the specificity and strength of monosynaptic connections between retinal ganglion cells and their target neurons. The responses of 205 pairs of retinal ganglion cells and geniculate neurons with overlapping receptive-field centers or surrounds were studied. Receptive fields were mapped quantitatively using a white-noise stimulus; connectivity was assessed by cross-correlating the retinal and geniculate spike trains. Of the 205 pairs, 12 were determined to have monosynaptic connections. Both the likelihood that cells were connected and the strength of connections increased with increasing similarity between retinal and geniculate receptive fields. Connections were never found between cells with <50% spatial overlap between their centers. The results suggest that although geniculate neurons often receive input from several retinal afferents, these multiple afferents represent a select subset of the retinal ganglion cells with overlapping receptive-field centers.


2000 ◽  
Vol 17 (6) ◽  
pp. 871-885 ◽  
Author(s):  
G.T. EINEVOLL ◽  
P. HEGGELUND

Spatial receptive fields of relay cells in dorsal lateral geniculate nucleus (dLGN) have commonly been modeled as a difference of two Gaussian functions. We present alternative models for dLGN cells which take known physiological couplings between retina and dLGN and within dLGN into account. The models include excitatory input from a single retinal ganglion cell and feedforward inhibition via intrageniculate interneurons. Mathematical formulas describing the receptive field and response to circular spot stimuli are found both for models with a finite and an infinite number of ganglion-cell inputs to dLGN neurons. The advantage of these models compared to the common difference-of-Gaussians model is that they, in addition to providing mathematical descriptions of the receptive fields of dLGN neurons, also make explicit contributions from the geniculate circuit. Moreover, the model parameters have direct physiological relevance and can be manipulated and measured experimentally. The discrete model is applied to recently published data (Ruksenas et al., 2000) on response versus spot-diameter curves for dLGN cells and for the retinal input to the cell (S-potentials). The models are found to account well for the results for the X-cells in these experiments. Moreover, predictions from the discrete model regarding receptive-field sizes of interneurons, the amount of center-surround antagonism for interneurons compared to relay cells, and distance between neighboring retinal ganglion cells providing input to interneurons, are all compatible with data available in the literature.


2000 ◽  
Vol 17 (2) ◽  
pp. 263-271 ◽  
Author(s):  
HIROYUKI UCHIYAMA ◽  
TAKAHIDE KANAYA ◽  
SHOICHI SONOHATA

One type of retinal ganglion cells prefers object motion in a particular direction. Neuronal mechanisms for the computation of motion direction are still unknown. We quantitatively mapped excitatory and inhibitory regions of receptive fields for directionally selective retinal ganglion cells in the Japanese quail, and found that the inhibitory regions are displaced about 1–3 deg toward the side where the null sweep starts, relative to the excitatory regions. Directional selectivity thus results from delayed transient suppression exerted by the nonconcentrically arranged inhibitory regions, and not by local directional inhibition as hypothesized by Barlow and Levick (1965).


1988 ◽  
Vol 1 (4) ◽  
pp. 377-385 ◽  
Author(s):  
Michael W. Levine ◽  
Roger P. Zimmerman

AbstractA new form of receptive field map, the response-component map, was developed to identify points within a receptive field that produce similar response patterns. The fields were probed with discretely flashed small spots of light. The magnitudes of the responses to stimulus onset and to stimulus offset elicited at each point were represented on the map by a vector radiating from the position representing the location of that point. Thus, response-component maps preserve the spatial distributions of responsivity and temporal nonlinearities. Points with similar response patterns were identified from a scatterplot in which the response at each spatial position was located in a plane representing the angles of the response-component vectors. Points with similar response characteristics that were also spatially contiguous were considered as a distinct response subregion within the receptive field.Barely 10% of the receptive fields of goldfish ganglion cells mapped with this technique proved as simple as the traditional concentric field described for retinal cells. In at least 17% of the cases, the field showed three concentric rings, with a very small “inner center” within the center of the field. In at least 50% of the cases, response subregions of different type lay side by side, rather than in a concentric configuration. Some subregions could be differentiated by the relative strengths of the responses to onset and offset of the stimulus spot, supporting the hypothesis that a push-pull system generates ganglion cell responses. Subregions were evident in successive mappings of the same cell, demonstrating they are not due to the vagaries of individual responses. They probably represent the spatial domains (or their intersections) of individual interneurons distal to the retinal ganglion cells. It is possible that position within the receptive field may be coded by the temporal pattern of the responses.


1989 ◽  
Vol 3 (5) ◽  
pp. 477-482 ◽  
Author(s):  
Luiz R. G. Britto ◽  
Kent T. Keyser ◽  
Dania E. Hamassaki ◽  
Toru Shimizu ◽  
Harvey J. Karten

AbstractImmunohistochemical and retrograde tracing techniques were combined to study the retinal ganglion cells which project to the pars ventralis of the lateral geniculate nucleus (GLv) in the pigeon. Using two different fluorescent tracers, two histochemically-distinct populations of ganglion cells were found to project to both the GLv and the optic tectum. The first population of ganglion cells exhibited tyrosine hydroxylase-like immunoreactivity and represented about 20% of all ganglion cells which were retrogradely labeled from the GLv. The second population of ganglion cells showed substance P-like immunoreactivity and represented about 13% of all ganglion cells projecting to the GLv. These results confirm earlier suggestions that the retinal axons projecting to the GLv also project elsewhere and demonstrate that heterogeneity of retinal ganglion cells transmitters is evident even within a single retino-recipient nucleus such as the GLv.


1996 ◽  
Vol 13 (1) ◽  
pp. 199-203 ◽  
Author(s):  
Peter D. Spear ◽  
Charlene B. Y. Kim ◽  
Aneeq Ahmad ◽  
Bryony W. Tom

AbstractStudies of the numbers of retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in primates suggest that the numbers of both types of neurons may vary over a two-fold range from one individual to another. This raises the question of whether the numbers of ganglion cells and LGN neurons are related or vary independently from individual to individual. We used stereological procedures to obtain unbiased estimates of the numbers of both cell types in seven rhesus monkeys. We found no significant correlation (rs. = −0.21) between the numbers of retinal and LGN cells in the same animals. In agreement with previous studies, the average ratio of the number of retinal ganglion cells that project to the LGN and the number of LGN cells was approximately 1:1. However, this ratio varied over a two-fold range, from 0.78:1 to 1.64:1, in individual animals. These results have important implications for understanding the mechanisms of retino-geniculate development and for understanding the connectional wiring between the retina and LGN.


Sign in / Sign up

Export Citation Format

Share Document