monosynaptic excitation
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 0)

H-INDEX

21
(FIVE YEARS 0)

Author(s):  
Tsuyoshi Nakajima ◽  
Toshiki Tazoe ◽  
Masanori Sakamoto ◽  
Takashi Endoh ◽  
Satoshi Shibuya ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Andreas A Kardamakis ◽  
Juan Pérez-Fernández ◽  
Sten Grillner

Animals integrate the different senses to facilitate event-detection for navigation in their environment. In vertebrates, the optic tectum (superior colliculus) commands gaze shifts by synaptic integration of different sensory modalities. Recent works suggest that tectum can elaborate gaze reorientation commands on its own, rather than merely acting as a relay from upstream/forebrain circuits to downstream premotor centers. We show that tectal circuits can perform multisensory computations independently and, hence, configure final motor commands. Single tectal neurons receive converging visual and electrosensory inputs, as investigated in the lamprey - a phylogenetically conserved vertebrate. When these two sensory inputs overlap in space and time, response enhancement of output neurons occurs locally in the tectum, whereas surrounding areas and temporally misaligned inputs are inhibited. Retinal and electrosensory afferents elicit local monosynaptic excitation, quickly followed by inhibition via recruitment of GABAergic interneurons. Multisensory inputs can thus regulate event-detection within tectum through local inhibition without forebrain control.


2014 ◽  
Vol 111 (4) ◽  
pp. 849-867 ◽  
Author(s):  
Mayu Takahashi ◽  
Yuriko Sugiuchi ◽  
Yoshikazu Shinoda

The caudal fastigial nucleus (FN) is known to be related to the control of eye movements and projects mainly to the contralateral reticular nuclei where excitatory and inhibitory burst neurons for saccades exist [the caudal portion of the nucleus reticularis pontis caudalis (NRPc), and the rostral portion of the nucleus reticularis gigantocellularis (NRG) respectively]. However, the exact reticular neurons targeted by caudal fastigioreticular cells remain unknown. We tried to determine the target reticular neurons of the caudal FN and superior colliculus (SC) by recording intracellular potentials from neurons in the NRPc and NRG of anesthetized cats. Neurons in the rostral NRG received bilateral, monosynaptic excitation from the caudal FNs, with contralateral predominance. They also received strong monosynaptic excitation from the rostral and caudal contralateral SC, and disynaptic excitation from the rostral ipsilateral SC. These reticular neurons with caudal fastigial monosynaptic excitation were not activated antidromically from the contralateral abducens nucleus, but most of them were reticulospinal neurons (RSNs) that were activated antidromically from the cervical cord. RSNs in the caudal NRPc received very weak monosynaptic excitation from only the contralateral caudal FN, and received either monosynaptic excitation only from the contralateral caudal SC, or monosynaptic and disynaptic excitation from the contralateral caudal and ipsilateral rostral SC, respectively. These results suggest that the caudal FN helps to control also head movements via RSNs targeted by the SC, and these RSNs with SC topographic input play different functional roles in head movements.


2013 ◽  
Vol 110 (3) ◽  
pp. 640-657 ◽  
Author(s):  
Y. Sugiuchi ◽  
M. Takahashi ◽  
Y. Shinoda

Neurons in the interstitial nucleus of Cajal (INC) that are known to be involved in eye and head movements are excitatory. We investigated the input-output organization of inhibitory INC neurons involved in controlling vertical saccades. Intracellular recordings were made in INC neurons activated antidromically by stimulation of the contralateral trochlear or oculomotor nucleus, and their synaptic input properties from the superior colliculi (SCs) and the contralateral INC were analyzed in anesthetized cats. Many INC neurons projected to the contralateral trochlear nucleus, Forel's field H, INC, and oculomotor nucleus, and mainly received monosynaptic excitation followed by disynaptic inhibition from the ipsi- and contralateral SCs. After sectioning the commissural connections between the SCs, these neurons received monosynaptic excitation from the ipsilateral medial SC and disynaptic inhibition via the INC from the contralateral lateral SC. Another group of INC neurons were antidromically activated from the contralateral oculomotor nucleus, INC and Forel's field H, but not from the trochlear nucleus, and received monosynaptic excitation from the ipsilateral lateral SC and disynaptic inhibition from the contralateral medial SC. The former group was considered to inhibit contralateral trochlear and inferior rectus motoneurons in upward saccades, whereas the latter was considered to inhibit contralateral superior rectus and inferior oblique motoneurons in downward saccades. The mutual inhibition existed between these two groups of INC neurons for upward saccades on one side and downward saccades on the other. This pattern of input-output organization of inhibitory INC neurons suggests that the basic neural circuits for horizontal and vertical saccades are similar.


2007 ◽  
Vol 98 (5) ◽  
pp. 2664-2682 ◽  
Author(s):  
M. Takahashi ◽  
Y. Sugiuchi ◽  
Y. Shinoda

The functional roles of commissural excitation and inhibition between the two superior colliculi (SCs) are not yet well understood. We previously showed the existence of strong excitatory commissural connections between the rostral SCs, although commissural connections had been considered to be mainly inhibitory. In this study, by recording intracellular potentials, we examined the topographical distribution of commissural monosynaptic excitation and inhibition from the contralateral medial and lateral SC to tectoreticular neurons (TRNs) in the medial or lateral SC of anesthetized cats. About 85% of TRNs examined projected to both the ipsilateral Forel's field H and the contralateral inhibitory burst neuron region where the respective premotor neurons for vertical and horizontal saccades reside. Medial TRNs received strong commissural excitation from the medial part of the opposite SC, whereas lateral TRNs received excitation mainly from its lateral part. Injection of wheat germ agglutinin–horseradish peroxidase into the lateral or medial SC retrogradely labeled many larger neurons in the lateral or medial part of the contralateral SC, respectively. These results indicated that excitatory commissural connections exist between the medial and medial parts and between the lateral and lateral parts of the rostral SCs. These may play an important role in reinforcing the conjugacy of upward and downward saccades, respectively. In contrast, medial SC projections to lateral SC TRNs and lateral SC projections to medial TRNs mainly produce strong inhibition. This shows that regions representing upward saccades inhibit contralateral regions representing downward saccades and vice versa.


2007 ◽  
Vol 97 (5) ◽  
pp. 3696-3712 ◽  
Author(s):  
Yoshiko Izawa ◽  
Yuriko Sugiuchi ◽  
Yoshikazu Shinoda

The neural organization of the pathways from the superior colliculus (SC) to trochlear motoneurons was analyzed in anesthetized cats using intracellular recording and transneuronal labeling techniques. Stimulation of the ipsilateral or contralateral SC evoked excitation and inhibition in trochlear motoneurons with latencies of 1.1–2.3 and 1.1–3.8 ms, respectively, suggesting that the earliest components of excitation and inhibition were disynaptic. A midline section between the two SCs revealed that ipsi- and contralateral SC stimulation evoked disynaptic excitation and inhibition in trochlear motoneurons, respectively. Premotor neurons labeled transneuronally after application of wheat germ agglutinin-conjugated horseradish peroxidase into the trochlear nerve were mainly distributed ipsilaterally in the Forel's field H (FFH) and bilaterally in the interstitial nucleus of Cajal (INC). Consequently, we investigated these two likely intermediaries between the SC and trochlear nucleus electrophysiologically. Stimulation of the FFH evoked ipsilateral mono- and disynaptic excitation and contralateral disynaptic inhibition in trochlear motoneurons. Preconditioning stimulation of the ipsilateral SC facilitated FFH-evoked monosynaptic excitation. Stimulation of the INC evoked ipsilateral monosynaptic excitation and inhibition, and contralateral monosynaptic inhibition in trochlear motoneurons. Preconditioning stimulation of the contralateral SC facilitated contralateral INC-evoked monosynaptic inhibition. These results revealed a reciprocal input pattern from the SCs to vertical ocular motoneurons in the saccadic system; trochlear motoneurons received disynaptic excitation from the ipsilateral SC via ipsilateral FFH neurons and disynaptic inhibition from the contralateral SC via contralateral INC neurons. These inhibitory INC neurons were considered to be a counterpart of inhibitory burst neurons in the horizontal saccadic system.


2005 ◽  
Vol 94 (3) ◽  
pp. 1727-1732 ◽  
Author(s):  
Charles P. Pluto ◽  
Nicolas L. Chiaia ◽  
Robert W. Rhoades ◽  
Richard D. Lane

In adult rats that sustained forelimb amputation on the day of birth, >30% of multiunit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) also respond to cutaneous hindlimb stimulation when cortical GABAA+B receptors are blocked (GRB). This study examined whether hindlimb receptive fields could also be revealed in forelimb-stump sites by reducing one known source of excitatory input to SI GABAergic neurons, the contralateral SI cortex. Corpus callosum projection neurons connect homotopic SI regions, making excitatory contacts onto pyramidal cells and interneurons. Thus in addition to providing monosynaptic excitation in SI, callosal fibers can produce disynaptic inhibition through excitatory synapses with inhibitory interneurons. Based on the latter of these connections, we hypothesized that inactivating the contralateral (intact) SI forelimb region would “unmask” normally suppressed hindlimb responses by reducing the activity of SI GABAergic neurons. The SI forelimb-stump representation was first mapped under normal conditions and then during GRB to identify stump/hindlimb responsive sites. After GRB had dissipated, the contralateral (intact) SI forelimb region was mapped and reversibly inactivated with injections of 4% lidocaine, and selected forelimb-stump sites were retested. Contralateral SI inactivation revealed hindlimb responses in ∼60% of sites that were stump/hindlimb responsive during GRB. These findings indicate that activity in the contralateral SI contributes to the suppression of reorganized hindlimb receptive fields in neonatally amputated rats.


2004 ◽  
Vol 92 (3) ◽  
pp. 1958-1962 ◽  
Author(s):  
Bror Alstermark ◽  
Jun Ogawa

Here we report on pyramidal and reticulospinal excitation in forelimb motoneurons in the adult mouse using intracellular recordings in vivo. The results have been obtained in BALB/C mice, which were anesthetized with midazolam fentanyl/fluanison. In contrast to the rat, only weak and infrequent pyramidal excitation could be evoked with a minimal trisynaptic linkage. Disynaptic reticulospinal excitation could always be evoked, as well as monosynaptic excitation from the medial longitudinal fasciculus. The results suggest that the reticulospinal pathway in the mouse is important in voluntary motor control of the forelimbs and that the role of the corticospinal tract might be different in mouse compared with rat. Our study provides an opening for studying the effect of genetic manipulation on specified descending systems in the mouse in vivo.


Sign in / Sign up

Export Citation Format

Share Document