scholarly journals On the Asymptotic Behavior of a Difference Equation with Maximum

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Fangkuan Sun

We study the asymptotic behavior of positive solutions to the difference equationxn=max{A/xn-1α,B/xn−2β},n=0,1,…,where0<α, β<1, A,B>0. We prove that every positive solution to this equation converges tox∗=max{A1/(α+1),B1/(β+1)}.

2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Ali Gelişken ◽  
Cengiz Çinar

We investigate asymptotic behavior and periodic nature of positive solutions of the difference equation , where and . We prove that every positive solution of this difference equation approaches or is eventually periodic with period 2.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Hongjian Xi ◽  
Taixiang Sun ◽  
Bin Qin ◽  
Hui Wu

We consider the following difference equationxn+1=xn-1g(xn),n=0,1,…,where initial valuesx-1,x0∈[0,+∞)andg:[0,+∞)→(0,1]is a strictly decreasing continuous surjective function. We show the following. (1) Every positive solution of this equation converges toa,0,a,0,…,or0,a,0,a,…for somea∈[0,+∞). (2) Assumea∈(0,+∞). Then the set of initial conditions(x-1,x0)∈(0,+∞)×(0,+∞)such that the positive solutions of this equation converge toa,0,a,0,…,or0,a,0,a,…is a unique strictly increasing continuous function or an empty set.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Stevo Stevic

We investigate the global asymptotic behavior of solutions of the difference equationxn+1=(1−∑j=0k−1xn−j)(1−e−Axn),n∈ℕ0, whereA∈(0,∞),k∈{2,3,…}, and the initial valuesx−k+1,x−k+2,…,x0are arbitrary negative numbers. Asymptotics of some positive solutions of the equation are also found.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Habib Mâagli ◽  
Noureddine Mhadhebi ◽  
Noureddine Zeddini

We establish the existence and uniqueness of a positive solution for the fractional boundary value problem , with the condition , where , and is a nonnegative continuous function on that may be singular at or .


1994 ◽  
Vol 25 (3) ◽  
pp. 257-265
Author(s):  
J. H. SHEN ◽  
Z. C. WANG ◽  
X. Z. QIAN

Consider the neutral difference equation \[\Delta(x_n- cx_{n-m})+p_nx_{n-k}=0, n\ge N\qquad (*) \] where $c$ and $p_n$ are real numbers, $k$ and $N$ are nonnegative integers, and $m$ is positive integer. We show that if \[\sum_{n=N}^\infty |p_n|<\infty \qquad (**) \] then Eq.(*) has a positive solution when $c \neq 1$. However, an interesting example is also given which shows that (**) does not imply that (*) has a positive solution when $c =1$.


2017 ◽  
Vol 14 (1) ◽  
pp. 306-313
Author(s):  
Awad. A Bakery ◽  
Afaf. R. Abou Elmatty

We give here the sufficient conditions on the positive solutions of the difference equation xn+1 = α+M((xn−1)/xn), n = 0, 1, …, where M is an Orlicz function, α∈ (0, ∞) with arbitrary positive initials x−1, x0 to be bounded, α-convergent and the equilibrium point to be globally asymptotically stable. Finally we present the condition for which every positive solution converges to a prime two periodic solution. Our results coincide with that known for the cases M(x) = x in Ref. [3] and M(x) = xk, where k ∈ (0, ∞) in Ref. [7]. We have given the solution of open problem proposed in Ref. [7] about the existence of the positive solution which eventually alternates above and below equilibrium and converges to the equilibrium point. Some numerical examples with figures will be given to show our results.


2010 ◽  
Vol 2010 ◽  
pp. 1-6
Author(s):  
Taixiang Sun ◽  
Hongjian Xi ◽  
Hui Wu ◽  
Caihong Han

We study the following difference equationxn+1=(p+xn-1)/(qxn+xn-1),n=0,1,…,wherep,q∈(0,+∞)and the initial conditionsx-1,x0∈(0,+∞). We show that every positive solution of the above equation either converges to a finite limit or to a two cycle, which confirms that the Conjecture 6.10.4 proposed by Kulenović and Ladas (2002) is true.


Sign in / Sign up

Export Citation Format

Share Document