scholarly journals Newton-Krylov Type Algorithm for Solving Nonlinear Least Squares Problems

2009 ◽  
Vol 2009 ◽  
pp. 1-17
Author(s):  
Mohammedi R. Abdel-Aziz ◽  
Mahmoud M. El-Alem

The minimization of a quadratic function within an ellipsoidal trust region is an important subproblem for many nonlinear programming algorithms. When the number of variables is large, one of the most widely used strategies is to project the original problem into a small dimensional subspace. In this paper, we introduce an algorithm for solving nonlinear least squares problems. This algorithm is based on constructing a basis for the Krylov subspace in conjunction with a model trust region technique to choose the step. The computational step on the small dimensional subspace lies inside the trust region. The Krylov subspace is terminated such that the termination condition allows the gradient to be decreased on it. A convergence theory of this algorithm is presented. It is shown that this algorithm is globally convergent.

2021 ◽  
Author(s):  
Morteza Kimiaei ◽  
Arnold Neumaier

AbstractThis paper suggests a new limited memory trust region algorithm for large unconstrained black box least squares problems, called LMLS. Main features of LMLS are a new non-monotone technique, a new adaptive radius strategy, a new Broyden-like algorithm based on the previous good points, and a heuristic estimation for the Jacobian matrix in a subspace with random basis indices. Our numerical results show that LMLS is robust and efficient, especially in comparison with solvers using traditional limited memory and standard quasi-Newton approximations.


Heliyon ◽  
2021 ◽  
pp. e07499
Author(s):  
Mahmoud Muhammad Yahaya ◽  
Poom Kumam ◽  
Aliyu Muhammed Awwal ◽  
Sani Aji

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 158
Author(s):  
Ioannis K. Argyros ◽  
Stepan Shakhno ◽  
Roman Iakymchuk ◽  
Halyna Yarmola ◽  
Michael I. Argyros

We develop a local convergence of an iterative method for solving nonlinear least squares problems with operator decomposition under the classical and generalized Lipschitz conditions. We consider the case of both zero and nonzero residuals and determine their convergence orders. We use two types of Lipschitz conditions (center and restricted region conditions) to study the convergence of the method. Moreover, we obtain a larger radius of convergence and tighter error estimates than in previous works. Hence, we extend the applicability of this method under the same computational effort.


Sign in / Sign up

Export Citation Format

Share Document