limited memory
Recently Published Documents


TOTAL DOCUMENTS

412
(FIVE YEARS 96)

H-INDEX

32
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 586
Author(s):  
Alberto Gascón ◽  
Roberto Casas ◽  
David Buldain ◽  
Álvaro Marco

Household appliances, climate control machines, vehicles, elevators, cash counting machines, etc., are complex machines with key contributions to the smart city. Those devices have limited memory and processing power, but they are not just actuators; they embed tens of sensors and actuators managed by several microcontrollers and microprocessors communicated by control buses. On the other hand, predictive maintenance and the capability of identifying failures to avoid greater damage of machines is becoming a topic of great relevance in Industry 4.0, and the large amount of data to be processed is a concern. This article proposes a layered methodology to enable complex machines with automatic fault detection or predictive maintenance. It presents a layered structure to perform the collection, filtering and extraction of indicators, along with their processing. The aim is to reduce the amount of data to work with, and to optimize them by generating indicators that concentrate the information provided by data. To test its applicability, a prototype of a cash counting machine has been used. With this prototype, different failure cases have been simulated by introducing defective elements. After the extraction of the indicators, using the Kullback–Liebler divergence, it has been possible to visualize the differences between the data associated with normal and failure operation. Subsequently, using a neural network, good results have been obtained, being able to correctly classify the failure in 90% of the cases. The result of this application demonstrates the proper functioning of the proposed approach in complex machines.


Author(s):  
Morteza Kimiaei ◽  
Arnold Neumaier ◽  
Behzad Azmi

AbstractRecently, Neumaier and Azmi gave a comprehensive convergence theory for a generic algorithm for bound constrained optimization problems with a continuously differentiable objective function. The algorithm combines an active set strategy with a gradient-free line search along a piecewise linear search path defined by directions chosen to reduce zigzagging. This paper describes , an efficient implementation of this scheme. It employs new limited memory techniques for computing the search directions, improves by adding various safeguards relevant when finite precision arithmetic is used, and adds many practical enhancements in other details. The paper compares and several other solvers on the unconstrained and bound constrained problems from the collection and makes recommendations on which solver to use and when. Depending on the problem class, the problem dimension, and the precise goal, the best solvers are , , and .


2021 ◽  
Author(s):  
Morteza Kimiaei ◽  
Arnold Neumaier

AbstractThis paper suggests a new limited memory trust region algorithm for large unconstrained black box least squares problems, called LMLS. Main features of LMLS are a new non-monotone technique, a new adaptive radius strategy, a new Broyden-like algorithm based on the previous good points, and a heuristic estimation for the Jacobian matrix in a subspace with random basis indices. Our numerical results show that LMLS is robust and efficient, especially in comparison with solvers using traditional limited memory and standard quasi-Newton approximations.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2093
Author(s):  
Huiping Cao ◽  
Xiaomin An

In our paper, we introduce a sparse and symmetric matrix completion quasi-Newton model using automatic differentiation, for solving unconstrained optimization problems where the sparse structure of the Hessian is available. The proposed method is a kind of matrix completion quasi-Newton method and has some nice properties. Moreover, the presented method keeps the sparsity of the Hessian exactly and satisfies the quasi-Newton equation approximately. Under the usual assumptions, local and superlinear convergence are established. We tested the performance of the method, showing that the new method is effective and superior to matrix completion quasi-Newton updating with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and the limited-memory BFGS method.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022048
Author(s):  
T V Kudinova ◽  
G A Osipov ◽  
F A Nanay

Abstract The paper examines digital demodulators for two commonly used techniques of modulating analog signals: amplitude modulation (AM) and frequency modulation (FM). The described demodulators can be used to perform the radio monitoring of narrowband signal ranges including FM broadcasting stations as well as license-free CB, LPD, PMR bands. The demodulators considered in this work are intended for programmable devices with limited memory and computing resources, for example, for STM32F407 microcontrollers and similar ones. The paper presents the analysis and simulation of demodulators for AM signals, FM signals with low modulation indices and for FM signals without restriction on the modulation indices. In addition, the authors demonstrate how to demodulate the phase-modulation signal using a quadrature demodulator. The number of operations that are available for demodulation is limited by IF multiplication and filtering. The simulation of the analyzed demodulation algorithms was carried out in the Scilab environment which is a free analogue of the Matlab environment. To explain the principle of operation of demodulators, block diagrams and graphs of signals in time and frequency domains are shown.


Author(s):  
Muna M. M. Ali

The use of the self-scaling Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is very efficient for the resolution of large-scale optimization problems, in this paper, we present a new algorithm and modified the self-scaling BFGS algorithm. Also, based on noticeable non-monotone line search properties, we discovered and employed a new non-monotone idea. Thereafter first, an updated formula is exhorted to the convergent Hessian matrix and we have achieved the secant condition, second, we established the global convergence properties of the algorithm under some mild conditions and the objective function is not convexity hypothesis. A promising behavior is achieved and the numerical results are also reported of the new algorithm.


2021 ◽  
Author(s):  
Jingyu Hu ◽  
Yan Wang ◽  
Yongjun Yan ◽  
Yanjun Ren ◽  
Jingxiang Wang ◽  
...  

2021 ◽  
Author(s):  
Laura Derksen ◽  
Jason Theodore Kerwin ◽  
Natalia Ordaz Reynoso ◽  
Olivier Sterck

Health behaviors are plagued by self-control problems, and commitment devices are frequently proposed as a solution. We show that a simple alternative works even better: appointments. We randomly offer HIV testing appointments and financial commitment devices to high-risk men in Malawi. Appointments are much more effective than financial commitment devices, more than doubling testing rates. In contrast, most men who take up financial commitment devices lose their investments. Appointments address procrastination without the potential drawback of commitment failure, and also address limited memory problems. Appointments have the potential to increase demand for healthcare in the developing world.


Geophysics ◽  
2021 ◽  
pp. 1-71
Author(s):  
Guo Yu ◽  
Colin G. Farquharson ◽  
Qibin Xiao ◽  
Man Li

We have developed a two-dimensional (2D) anisotropic magnetotelluric (MT) inversion algorithm that uses a limited-memory quasi-Newton (QN) method for bounds-constrained optimization. This algorithm solves the inverse problem, which is non-linear, by iterative minimization of linearized approximations of the classical Tikhonov regularized objective function. The QN approximation for the Hessian matrix is only implemented for the data-misfit term of the objective function; the part of the Hessian matrix for the regularization is explicitly computed. This adjustment results in a better approximation for the data-misfit term in particular. The inversion algorithm considers arbitrary anisotropy, and is extended for special cases including azimuthal and vertical anisotropy. The algorithm is shown to be stable and converges rapidly for several simple anisotropic models. These synthetic tests also confirm that the anisotropic inversion produces a correct anomaly with different but equivalent anisotropic parameters. We also consider a complex 2D anisotropic model; the successful results for this model further confirm that the inversion algorithm presented here, which uses the novel modified limited-memory QN approach, is capable of solving the 2D anisotropic magnetotelluric inverse problem. Finally, we present a practical application on MT data collected in northern Tibet to demonstrate the effectiveness and stability of our algorithm.


Sign in / Sign up

Export Citation Format

Share Document