scholarly journals Modified Predictor-Corrector WAF Method for the Shallow Water Equations with Source Terms

2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Montri Maleewong

A modified predictor-corrector scheme combining with the depth gradient method (DGM) and the weighted average flux (WAF) method has been presented to solve the one-dimensional shallow water equations with source terms. Approximate solutions in the predictor step are obtained by the DGM with piecewise-linear reconstructions in each cell volume. The source terms can then be calculated directly by these predicted values at the corresponding half-time step. In the corrector step, the TVD version of the WAF method is applied to calculate the numerical fluxes at the same half-time step for each cell face. The accuracy of numerical solutions is shown by applying the method to solve various test cases in both steady and unsteady problems with and without source terms. It shows that the numerical results are in good agreement with the existing analytical solutions as well as experimental data in some test cases.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Thida Pongsanguansin ◽  
Montri Maleewong ◽  
Khamron Mekchay

A well-balanced scheme with total variation diminishing Runge-Kutta discontinuous Galerkin (TVD-RK DG) method for solving shallow water equations is presented. Generally, the flux function at cell interface in the TVD-RK DG scheme is approximated by using the Harten-Lax-van Leer (HLL) method. Here, we apply the weighted average flux (WAF) which is higher order approximation instead of using the HLL in the TVD-RK DG method. The consistency property is shown. The modified well-balanced technique for flux gradient and source terms under the WAF approximations is developed. The accuracy of numerical solutions is demonstrated by simulating dam-break flows with the flat bottom. The steady solutions with shock can be captured correctly without spurious oscillations near the shock front. This presents the other flux approximations in the TVD-RK DG method for shallow water simulations.


2003 ◽  
Vol 42 (1) ◽  
pp. 23-55 ◽  
Author(s):  
Tomás Chacón Rebollo ◽  
Enrique D. Fernández Nieto ◽  
Macarena Gómez Mármol

2018 ◽  
Vol 52 (5) ◽  
pp. 1679-1707 ◽  
Author(s):  
Edwige Godlewski ◽  
Martin Parisot ◽  
Jacques Sainte-Marie ◽  
Fabien Wahl

We are interested in the modeling and the numerical approximation of flows in the presence of a roof, for example flows in sewers or under an ice floe. A shallow water model with a supplementary congestion constraint describing the roof is derived from the Navier-Stokes equations. The congestion constraint is a challenging problem for the numerical resolution of hyperbolic equations. To overcome this difficulty, we follow a pseudo-compressibility relaxation approach. Eventually, a numerical scheme based on a finite volume method is proposed. The well-balanced property and the dissipation of the mechanical energy, acting as a mathematical entropy, are ensured under a non-restrictive condition on the time step in spite of the large celerity of the potential waves in the congested areas. Simulations in one dimension for transcritical steady flow are carried out and numerical solutions are compared to several analytical (stationary and non-stationary) solutions for validation.


Sign in / Sign up

Export Citation Format

Share Document