bed slope
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 64)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 961 (1) ◽  
pp. 012058
Author(s):  
M A Kadhim ◽  
N K Al-Bedyry ◽  
I I Omran

Abstract In this study, four types of flood routing approaches were studied which give significantly varied results represented by the differences between computed and observed flows and also differ considerably on the friction coefficient and bed slope of the channels. First two approaches use a hydraulic solution to solve the equations of unsteady flow, while the third approach uses the hydrological solution, and the fourth algorithm solves Muskingum approach with seven parameters. All these approaches were run with the same input parameters, the results were compared and tested with four Error Measurement Indices, Sum of Squared Deviations, Error of Peak Discharge, Variance Index, and agreement index. Diyala River was selected for this application. Dynamic wave method gave accurate results, followed by the characteristic method, and then the linear Muskingum-Cunge method, but Symbiotic Organisms Search Algorithm not gave any senses due to change in roughness or bed slope and gave very identical values with recorded outflow in all conditions, which means that the hydraulic solution is better compared to the hydrological solution. The results also showed that the difference between the calculated and observed flows diminished with a decrease in the coefficient of friction and an increase in the bed slope channel.


2022 ◽  
Vol 961 (1) ◽  
pp. 012031
Author(s):  
Rasool Kosaj ◽  
Rafid S Alboresha ◽  
Sadeq O Sulaiman

Abstract In this paper, the laboratory data were compared with computational fluid dynamics (CFD) Flow3D for predicting the beginning of sediment incipient motion in rigid boundary channel for two types of sands, irrigation, and sewer types, in rectangular flume (0.5*0.5)m cross-section. Tests were made for soil samples with different diameters, specific weights. The testing was performed in slopes ranging from 0.001-0.003 for irrigation types and 0.0025-0.025 for sewer types depending on the original parameter. The Flow-3D software has simulated the laboratory work using scouring models MPM and Nielsen. the relation between sediment incipient motion velocity, particle size, and channel bed slope was predicted. The results were relatively more than laboratory data for the MPM model, while grating convergence for Nielsen model, especially for small diameter sediment. Also, the laboratory results are more close to the results of Flow3D using the Nielsen model when the value of bed slope of the channel is greater, and vice versa when the slope decreases.


2022 ◽  
Vol 28 (1) ◽  
pp. 76-85
Author(s):  
Aya kh. Shaheed ◽  
Riyadh Z. Azzubaidi

This study aims to numerically simulate the flow of the salt wedge by using computational fluid dynamics, CFD. The accuracy of the numerical simulation model was assessed against published laboratory data. Twelve CFD model runs were conducted under the same laboratory conditions. The results showed that the propagation of the salt wedge is inversely proportional to the applied freshwater discharge and the bed slope of the flume.  The maximum propagation is obtained at the lowest discharge value and the minimum slope of the flume. The comparison between the published laboratory results and numerical simulation shows a good agreement. The range of the relative error varies between 0 and 16% with an average of 2% and a root mean square error of 0.18. Accordingly, the CFD software is quite valid to simulate the propagation of the salt wedge. 


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sarah Overgaard Sørensen ◽  
Jesper Pedersen ◽  
Martin G. Rasmussen ◽  
Peter L. Kristensen ◽  
Anders Grøntved

Abstract Objective Salivary cortisol and cortisone are used as biomarkers of physiological stress. Careful sampling of saliva for profiling of awakening response and the diurnal slope can be challenging in free-living environments, and validated sampling protocols are lacking. Therefore, we investigated (1) the level of compliance to a three-day home-based salivary sampling protocol, and (2) the within subject day-to-day variability of cortisol and cortisone outcomes and the required measuring days to obtain high reproducibility. Results Nineteen healthy adults (mean age: 42, 50% females) participated. Participants collected in total 434 salivary samples out of 456 scheduled (four samples per day over three consecutive days at two time points). We found high level of compliance to the proposed free-living salivary sampling protocol with 18 (95%) and 16 (84%) participants being compliant to numbers and timing of samples, respectively. The area under the curve for the morning salivary samples and peak-to-bed slope had moderate reproducibility for cortisol and cortisone (intraclass correlation coefficient: 0.51–0.68, and mean coefficient of variation: 14.7%-75.3%). Three-to-four measuring days were required for high reproducibility of the area under the curve for the morning salivary samples and peak-to-bed slope using this free-living salivary sampling protocol. Trial registration Clinical trial registered with www.clinicaltrials.gov (NCT03788525).


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3036
Author(s):  
Alessio Nicosia ◽  
Vincenzo Pampalone ◽  
Vito Ferro

The development of rills on a hillslope whose soil is amended by biochar remains a topic to be developed. A theoretical rill flow resistance equation, obtained by the integration of a power velocity distribution, was assessed using available measurements at plot scale with a biochar added soil. The biochar was incorporated and mixed with the arable soil using a biochar content BC of 6 and 12 kg m−2. The developed analysis demonstrated that an accurate estimate of the velocity profile parameter Гv can be obtained by the proposed power equation using an exponent e of the Reynolds number which decreases for increasing BC values. This result pointed out that the increase of biochar content dumps flow turbulence. The agreement between the measured friction factor values and those calculated by the proposed flow resistance equation, with Гv values estimated by the power equation calibrated on the available measurements, is characterized by errors which are always less than or equal to ±10% and less than or equal to ±3% for 75.0% of cases. In conclusion, the available measurements and the developed analysis allowed for (i) the calibration of the relationship between Гv, the bed slope, the flow Froude number, and the Reynolds number, (ii) the assessment of the influence of biochar content on flow resistance and, (iii) stating that the theoretical flow resistance equation gives an accurate estimate of the Darcy–Weisbach friction factor for rill flows on biochar added soils.


2021 ◽  
pp. 473-489
Author(s):  
Mohammad Ebrahim Banihabib ◽  
Mitra Tanhapour

AbstractIn this chapter, the precipitation threshold at which debris floods occur was evaluated experimentally, and the factors that influence debris flood occurrence, including the bed slope, sediment layer thickness, sediment grain size, length of alluvial flow direction, precipitation intensity, and time of debris flood occurrence, were examined. The impacts of these factors on debris flood initiation were investigated through dimensional analysis. Then, a method was developed to estimate the precipitation intensity threshold based on a set of laboratory tests. Furthermore, different methods for determining the precipitation intensity threshold at which debris floods are initiated were assessed and discussed. The results of the experiments showed that the effect of the sediment layer thickness on debris flood occurrence can be ignored. Moreover, by independently evaluating the effect of each factor on debris flood occurrence, it was found that the sediment length and average diameter of sediments are influential to debris flood initiation. The results of this research provide a better understanding of debris flood mechanisms and occurrence thresholds of debris floods and can be employed to prepare a forecasting model.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Najla M. Alarifi ◽  
Rabha W. Ibrahim

Saint-Venant equations describe the flow below a pressure surface in a fluid. We aim to generalize this class of equations using fractional calculus of a complex variable. We deal with a fractional integral operator type Prabhakar operator in the open unit disk. We formulate the extended operator in a linear convolution operator with a normalized function to study some important geometric behaviors. A class of integral inequalities is investigated involving special functions. The upper bound of the suggested operator is computed by using the Fox-Wright function, for a class of convex functions and univalent functions. Moreover, as an application, we determine the upper bound of the generalized fractional 2-dimensional Saint-Venant equations (2D-SVE) of diffusive wave including the difference of bed slope.


Author(s):  
Mohd Afiq Harun ◽  
Aminuddin Ab. Ghani ◽  
Reza Mohammadpour ◽  
Ngai Weng Chan

Abstract For decades, research on stable channel hydraulic geometry was based on the following parameters: river discharge, dimensionless discharge, the median size of bed material and the slope. Although significant research has been conducted in this area, including applied machine learning to increase the geometry model prediction accuracy, there has been no remarkable improvement as the variables used to describe the geometry relationship remain the same. The novelty of this study is demonstrated by the parameters used in the stable channel geometry equations that outperform the existing equation's accuracy. In this research, sediment transport parameters are introduced and analysed by applying the multiple linear regression (MLR) and gene expression programming (GEP) methods. The new equation of the width, depth and bed slope can give much-improved results in efficiency and lower errors. Furthermore, a new parameter B/y is introduced in this study to solve the restriction issue, either in width or depth prediction. The results from MLR and GEP show that in addition to the existing hydraulic geometry parameter, the B/y parameter is also able to give high accuracy results for width and depth predictions. Both calibration and validation for the B/y parameter yield high R2 and NSE values with low mean squared errors and mean absolute errors.


2021 ◽  
Vol 69 (3) ◽  
pp. 243-254
Author(s):  
Pritam Malakar ◽  
Ratul Das

Abstract In alluvial channel, the non-cohesive bed particles are frequently accelerated by the flows and there has been an inconclusive debate on the deviations of logarithmic law parameters that demonstrate the velocity distributions in flows. Present study aims to elucidate the current knowledge of overwhelming theoretical and experimental evidences in this regard within the scope of near-bed turbulent flow characteristics. The study was conducted in two folds collecting instantaneous velocity of flow over a rigid sand bed under clear water flow conditions and compared to those over mobile sand beds under equilibrium bed-load. Results corroborated additional support to confirm the upward shifting of zero-velocity level in mobile bed flows. Most importantly, the conventional value of von Kármán coefficient significantly deviates in mobile bed flows compared to those in rigid sand bed. Also, the frictional velocity obtained from the bed slope consistently differs to those obtained from the Reynolds shear stress (RSS) distributions owing to transfer of stress aliquot to the bed particles. The mechanism is well demonstrated with the energy-momentum transfer within the framework of energy budget concept which shows near-bed negative pressure energy diffusion rates with increasing turbulence production in mobile bed flows.


Sign in / Sign up

Export Citation Format

Share Document