free surface flow
Recently Published Documents


TOTAL DOCUMENTS

1121
(FIVE YEARS 168)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 448
Author(s):  
Najam us Saqib ◽  
Muhammad Akbar ◽  
Huali Pan ◽  
Guoqiang Ou ◽  
Muhammad Mohsin ◽  
...  

In this study, curved risers stepped spillways models based on the increasing angle of suspension were tested to check for improvement in energy dissipation and pressure distributions. Four fourteen-steps stepped spillway models with a slope 1:0.84 were selected, using Froude’s number non-dimensional similarity. The risers of steps were made curved, based on three angles of suspensions, i.e., 30°, 60°, and 90°. The simulations were performed by FLOW 3D software and by the turbulence model Renormalization Group (RNG) for discharges between 0.020 and 0.068 m3/s followed by the model calibration. The 3D Reynolds-averaged Navier–Stokes equations were solved, which included sub-grid models for air entrainment, density evaluation, and drift–flux, to capture free-surface flow over the stepped spillway. It was estimated that curving the risers increases the energy dissipation up to three percent for lower flow rates, whereas it has no significant impact on energy dissipation for higher flow rates. It was found that in simply stepped spillway lower steps dissipate more energy as compared to curved risers stepped where energy dissipation is shifted to higher steps. On the other hand, curved risers stepped spillways showed lower values of negative pressures as compared to the simply stepped spillway. It was seen that a higher energy dissipating step as experienced more negative pressures as compared to the lower energy dissipating step.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Rifqa Fikriya Rahasri ◽  
Asril Pramutadi Andi Mustari ◽  
Anni Nuril Hidayati

The very complex structure of nuclear reactors is one aspect of the cause of severe accidents in nuclear reactors. To prevent serious accidents, analysis is needed on the reactor design before the reactor is built. Reactor accident analysis can be done using the Moving Particle Semi-Implicit method. The Moving Particle Semi-Implicit method is excellent in simulating the movement of liquid fuel in a reactor because it can analyze the free surface flow of an incompressible liquid without using a mesh grid. Simulations were carried out using three types of fluids with different viscosities and densities such as water, oil, and wax. The simulation results show that the water takes the fastest time to drain all the particles and the oil takes the longest time. From the simulation results, it can be determined that the kinematic viscosity of a liquid affects its flow velocity.


Author(s):  
Nguyen Van My ◽  
Le Anh Tien ◽  
Phan Hoang Nam ◽  
Nguyen Quoc Khanh ◽  
Chau Van Than ◽  
...  

This study aims at numerically exploring the behavior of flow fields and nonlinear hydrodynamic coefficients of a horizontal cylinder beneath the free surface flow considering the effects of nonlinear surface waves and various cylinder shapes. The computational model is based on two-dimensional incompressible Navier-Stokes solvers along with the treatment of the free surface flow using the volume of fluid method. The effect of the turbulent flow is also considered by using the shear stress transport turbulence model. The simulation result of a benchmark case study of the submerged cylinder is first validated with available experiment data, where a mesh convergence analysis is also performed. Afterward, the flow fields and hydrodynamic force coefficients around the cylinder surface are analyzed, and the influences of various cylinder shapes and Reynolds numbers on the hydrodynamic coefficients are investigated. A state diagram representing the hydrodynamic behavior including stable and unstable stages is finally proposed; this is an important criterion for the practice design of submerged civil structures under the free surface flow.


2021 ◽  
Vol 5 (2) ◽  
pp. 149-156
Author(s):  
Andrej Lipej ◽  
Boro Popovski

Hydro energy still occupies an important place among renewable energy sources. In special operating conditions, Pelton turbines are irreplaceable and can be used for extremely small hydropower plants and also large hydro power plants. Pelton turbines can operate with high head and relatively small flow rates. In many cases, the height differences of the water are very large. Sometimes it is necessary to stop the operation of the turbine very quickly and the consequences of water hammer can be very severe. The responsible part to minimize the consequences of this phenomena is jet deflector, which can be in two different technical designs. The steps for 3-D geometry definition, pre-processing and post-processing, flow modelling and FEM analysis are presented. In the paper is presented the new optimized design of push-out jet deflector shape. Optimization consider 3-D CFD analysis of free surface flow and stress analysis. The main goal of the research was to minimize the influence of all force components on the torque of deflector servomotor. The final results present the geometry of the deflector, with a significant reduction in the stresses and deformations. These have been achieved with a crucial reduction in the hydrodynamic force and torque.


2021 ◽  
Vol 157 (A3) ◽  
Author(s):  
M Haase ◽  
J R Binns ◽  
N Bose ◽  
G Davidson ◽  
G Thomas ◽  
...  

Large medium-speed catamarans are a new class of vessel currently under development as fuel-efficient ferries for sustainable fast sea transportation. Appropriate data to derive design guidelines for such vessels are not available and therefore a wide range of demihull slenderness ratios were studied to investigate the design space for fuel-efficient operation. Computational fluid dynamics for viscous free-surface flow simulations were utilised to investigate resistance properties of different catamaran configurations having a similar deadweight at light displacement, but with lengths ranging from 110 m to 190 m. The simulations were conducted at full-scale Reynolds numbers (log(Re) = 8.9 – 9.6) and Froude numbers ranged from Fr = 0.25 to 0.49. Hulls of 130 m and below had high transport efficiency below 26 knots and in light loading conditions while hulls of 150 m and 170 m showed benefits for heavier displacement cases and speeds up to 35 knots. Furthermore, the study concluded that the lowest drag was achieved with demihull slenderness ratios between 11 and 13.


Author(s):  
Costel Ungureanu

Starting with January 2013, naval architects faces new challenges, as all ships greater than 400 tons must comply with energy efficiency index (MPEC 62, 2011). From ship hydrodynamics point of view one handy solution is using Energy Saving Devices (ESD), with the main purpose to improve the flow parameters entering the propeller. For ballast loading condition the ESD may intersect the free surface disturbing and complicating the flow due to free surface /boundary layer interaction, turbulence and breaking wave effects that coexist and which are not completely clarified so far. Therefore, a free surface flow around a NACA 0012 surface piercing hydrofoil is numerically investigated and the results are compared to experimental results obtained in the Towing Tank of the Naval Architecture Faculty, “Dunarea de Jos” University of Galati. The comparison includes drag and free surface elevation on hydrofoil surface together with numerical uncertainty.


2021 ◽  
Vol 18 (3) ◽  
pp. 229-237
Author(s):  
H.A. Abubakar ◽  
A. Yusuf ◽  
Y. Sanusi ◽  
H.A. Dandajeh

Petrov-Galerkin finite element scheme for systematic analysis of the dynamics of a rising Taylor bubble and general free surface flow problems is derived and implemented. The validity of the scheme is confirmed by simulating the buoyancy-driven motion of a Taylor bubble through a stagnant Newtonian liquid in a vertical pipe characterised by dimensionless inverse viscosity number and Eötvös number of magnitude 111 and 189, respectively. Comparison of the numerical results for the steady state features defining the nose, film, and bottom regions around the bubble with the experiment shows a good agreement between the numerical simulation and the experiment. The percentage deviation of the numerical computed rise velocity, equilibrium film thickness, and stabilisation length ahead of the bubble from the experimental determined values are 8.4%, 2.3%, and 9.5%, respectively.


2021 ◽  
Vol 239 ◽  
pp. 109840
Author(s):  
Yiyang Zong ◽  
Xizeng Zhao ◽  
Hongyue Sun ◽  
Ronghua Zhu

Sign in / Sign up

Export Citation Format

Share Document