scholarly journals Myosin Binding Protein-C: A Regulator of Actomyosin Interaction in Striated Muscle

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Maegen A. Ackermann ◽  
Aikaterini Kontrogianni-Konstantopoulos

Myosin-Binding protein-C (MyBP-C) is a family of accessory proteins of striated muscles that contributes to the assembly and stabilization of thick filaments, and regulates the formation of actomyosin cross-bridges, via direct interactions with both thick myosin and thin actin filaments. Three distinct MyBP-C isoforms have been characterized; cardiac, slow skeletal, and fast skeletal. Numerous mutations in the gene for cardiac MyBP-C (cMyBP-C) have been associated with familial hypertrophic cardiomyopathy (FHC) and have led to increased interest in the regulation and roles of the cardiac isoform. This review will summarize our current knowledge on MyBP-C and its role in modulating contractility, focusing on its interactions with both myosin and actin filaments in cardiac and skeletal muscles.

2011 ◽  
Vol 286 (12) ◽  
pp. 9913-9919 ◽  
Author(s):  
Jeanne James ◽  
Jeffrey Robbins

Myosin-binding protein C (MyBP-C) is a thick filament protein consisting of 1274 amino acid residues (149 kDa) that was identified by Starr and Offer over 30 years ago as a contaminant present in a preparation of purified myosin. Since then, numerous studies have defined the muscle-specific isoforms, the structure, and the importance of the proteins in normal striated muscle structure and function. Underlying the critical role the protein plays, it is now apparent that mutations in the cardiac isoform (cMyBP-C) are responsible for a substantial proportion (30–40%) of genotyped cases of familial hypertrophic cardiomyopathy. Although generally accepted that MyBP-C can interact with all three filament systems within the sarcomere (the thick, thin, and titin filaments), the exact nature of these interactions and the functional consequences of modified binding remain obscure. In addition to these structural considerations, cMyBP-C can serve as a point of convergence for signaling processes in the cardiomyocyte via post-translational modifications mediated by kinases that phosphorylate residues in the cardiac-specific isoform sequence. Thus, cMyBP-C is a critical nodal point that has both important structural and signaling roles and whose modifications are known to cause significant human cardiac disease.


1998 ◽  
Vol 338 (18) ◽  
pp. 1248-1257 ◽  
Author(s):  
Hideshi Niimura ◽  
Linda L. Bachinski ◽  
Somkiat Sangwatanaroj ◽  
Hugh Watkins ◽  
Albert E. Chudley ◽  
...  

2018 ◽  
Vol 115 (19) ◽  
pp. E4386-E4395 ◽  
Author(s):  
Sho Matsuyama ◽  
Yohko Kage ◽  
Noriko Fujimoto ◽  
Tomoki Ushijima ◽  
Toshihiro Tsuruda ◽  
...  

Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C–binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C–binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C–null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C–null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C–null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C–related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C–mediated regulation of cardiac function via direct interaction.


2005 ◽  
Vol 14 (23) ◽  
pp. 3587-3593 ◽  
Author(s):  
Kathryn M. Meurs ◽  
Ximena Sanchez ◽  
Ryan M. David ◽  
Neil E. Bowles ◽  
Jeffrey A. Towbin ◽  
...  

1995 ◽  
Vol 11 (4) ◽  
pp. 434-437 ◽  
Author(s):  
Hugh Watkins ◽  
David Conner ◽  
Ludwig Thierfelder ◽  
John A. Jarcho ◽  
Calum MacRae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document