scholarly journals Robust Adaptive Switching Control for Markovian Jump Nonlinear Systems via Backstepping Technique

2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Jin Zhu ◽  
Hongsheng Xi ◽  
Qiang Ling ◽  
Wanqing Xie

This paper investigates robust adaptive switching controller design for Markovian jump nonlinear systems with unmodeled dynamics and Wiener noise. The concerned system is of strict-feedback form, and the statistics information of noise is unknown due to practical limitation. With the ordinary input-to-state stability (ISS) extended to jump case, stochastic Lyapunov stability criterion is proposed. By using backstepping technique and stochastic small-gain theorem, a switching controller is designed such that stochastic stability is ensured. Also system states will converge to an attractive region whose radius can be made as small as possible with appropriate control parameters chosen. A simulation example illustrates the validity of this method.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Jeang-Lin Chang ◽  
Tsui-Chou Wu

This paper examines the use of an output feedback variable structure controller with a nonlinear sliding surface for a class of SISO nonlinear systems in the presence of matched disturbances. With only the measurable system output, the discontinuous observer reconstructs the system states and ensures that the estimation errors exponentially approach zero. Using the estimation states, the proposed nonlinear sliding surface with variable damping ratio can simultaneously achieve low overshoot and short settling time. Then the passivity-based controller including a discontinuous term can guarantee that the closed-loop system asymptotically converges to the sliding surface. Compared with other sliding mode controllers, the proposed passivity-based control scheme has better transient performance and effectively reduces the control gain. Finally, simulation results demonstrate the validity of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Zhongwei Lin ◽  
Jizhen Liu ◽  
Yuguang Niu

This paper investigates the linearization and stabilizing control design problems for a class of SISO Markovian jump nonlinear systems. According to the proposed relative degree set definition, the system can be transformed into the canonical form through the appropriate coordinate changes followed with the Markovian switchings; that is, the system can be full-state linearized in every jump mode with respect to the relative degree setn,…,n. Then, a stabilizing control is designed through applying the backstepping technique, which guarantees the asymptotic stability of Markovian jump nonlinear systems. A numerical example is presented to illustrate the effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document