robust adaptive
Recently Published Documents


TOTAL DOCUMENTS

3900
(FIVE YEARS 772)

H-INDEX

90
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Nguyen Hoai Nam

There exist several approaches to design the optimal control strategy to harvest wave energy with a point absorber. However they are generally based on the assumption that the WEC and the PTO dynamics are well-known. In the practical WEC control implementation, this is generally not the case. The objective of this paper is to design a robust optimal control strategy that can take into account the uncertain WEC and PTO dynamics. Our choice is a robust adaptive PI control law. The proposed controller is validated and compared through simulation for irregular sea states.


2022 ◽  
Author(s):  
Nguyen Hoai Nam

There exist several approaches to design the optimal control strategy to harvest wave energy with a point absorber. However they are generally based on the assumption that the WEC and the PTO dynamics are well-known. In the practical WEC control implementation, this is generally not the case. The objective of this paper is to design a robust optimal control strategy that can take into account the uncertain WEC and PTO dynamics. Our choice is a robust adaptive PI control law. The proposed controller is validated and compared through simulation for irregular sea states.


2022 ◽  
Author(s):  
Jingwei hou ◽  
Dingxuan Zhao ◽  
Zhuxin Zhang

Abstract A novel trajectory tracking strategy is developed for a double actuated swing in a hydraulic construction robot. Specifically, a nonlinear hydraulic dynamics model of a double actuated swing is established, and a robust adaptive control strategy is designed to enhance the trajectory tracking performance. When an object is grabbed and unloaded, the inertia of a swing considerably changes, and the performance of the estimation algorithm is generally inadequate. Thus, it is necessary to establish an algorithm to identify the initial value of the moment of inertia of the object. To this end, this paper proposes a novel initial value identification algorithm based on a two-DOF robot gravity force identification method combined with computer vision information. The performance of the identification algorithm is enhanced. Simulations and experiments are performed to verify the effect of the novel control scheme.


Author(s):  
Sina Ameli ◽  
Olugbenga Anubi

Abstract This paper solves the problem of regulating the rotor speed tracking error for wind turbines in the full-load region by an effective robust-adaptive control strategy. The developed controller compensates for the uncertainty in the control input effectiveness caused by a pitch actuator fault, unmeasurable wind disturbance, and nonlinearity in the model. Wind turbines have multi-layer structures such that the high-level structure is nonlinearly coupled through an aggregation of the low-level control authorities. Hence, the control design is divided into two stages. First, an ℒ2 controller is designed to attenuate the influence of wind disturbance fluctuations on the rotor speed. Then, in the low-level layer, a controller is designed using a proposed adaptation mechanism to compensate for actuator faults. The theoretical results show that the closed-loop equilibrium point of the regulated rotor speed tracking error dynamics in the high level is finite-gain ℒ2 stable, and the closed-loop error dynamics in the low level is globally asymptotically stable. Simulation results show that the developed controller significantly reduces the root-mean- square of the rotor speed error compared to some well-known works, despite the largely fluctuating wind disturbance, and the time-varying uncertainty in the control input effectiveness.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Asma Bahamyirou ◽  
Mireille E. Schnitzer ◽  
Edward H. Kennedy ◽  
Lucie Blais ◽  
Yi Yang

Abstract Effect modification occurs when the effect of a treatment on an outcome differsaccording to the level of some pre-treatment variable (the effect modifier). Assessing an effect modifier is not a straight-forward task even for a subject matter expert. In this paper, we propose a two-stageprocedure to automatically selecteffect modifying variables in a Marginal Structural Model (MSM) with a single time point exposure based on the two nuisance quantities (the conditionaloutcome expectation and propensity score). We highlight the performance of our proposal in a simulation study. Finally, to illustrate tractability of our proposed methods, we apply them to analyze a set of pregnancy data. We estimate the conditional expected difference in the counterfactual birth weight if all women were exposed to inhaled corticosteroids during pregnancy versus the counterfactual birthweight if all women were not, using data from asthma medications during pregnancy.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhifang Wang ◽  
Jianguo Yu ◽  
Shangjing Lin

Purpose To solve the above problems and ensure the stability of the ad hoc network node topology in the process of wireless signal transmission, this paper aims to design a robust adaptive sliding film fault-tolerant controller under the nonlinear distortion of signal transmission in an amorphous flat air-to-ground wireless ad hoc network system. Design/methodology/approach This paper designs a robust adaptive sliding film fault-tolerant controller under the nonlinear distortion of signal transmission in an amorphous flat air-to-ground wireless ad hoc network system. Findings The simulation results show that the amorphous flat wireless self-organizing network system has good nonlinear distortion fault-tolerant correction ability under the feedback control of the designed controller, and the system has the asymptotically stable convergence ability; the test results show: the node topology of the self-organizing network structural stability is significantly improved, which provides a foundation for the subsequent realization of long-distance transmission of ad hoc network nodes. Research limitations/implications Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further. Originality/value The controller can extract the fault information caused by nonlinear distortion in the wireless signal transmission process, and at the same time, its feedback matrix K can gradually converge the generated wireless signal error to zero, to realize the stable transmission of the wireless signal.


2022 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Jiqiang Li ◽  
Guoqing Zhang ◽  
Bo Li

Around the cooperative path-following control for the underactuated surface vessel (USV) and the unmanned aerial vehicle (UAV), a logic virtual ship-logic virtual aircraft (LVS-LVA) guidance principle is developed to generate the reference heading signals for the USV-UAV system by using the “virtual ship” and the “virtual aircraft”, which is critical to establish an effective correlation between the USV and the UAV. Taking the steerable variables (the main engine speed and the rudder angle of the USV, and the rotor angular velocities of the UAV) as the control input, a robust adaptive neural cooperative control algorithm was designed by employing the dynamic surface control (DSC), radial basic function neural networks (RBF-NNs) and the event-triggered technique. In the proposed algorithm, the reference roll angle and pitch angle for the UAV can be calculated from the position control loop by virtue of the nonlinear decouple technique. In addition, the system uncertainties were approximated through the RBF-NNs and the transmission burden from the controller to the actuators was reduced for merits of the event-triggered technique. Thus, the derived control law is superior in terms of the concise form, low transmission burden and robustness. Furthermore, the tracking errors of the USV-UAV cooperative control system can converge to a small compact set through adjusting the designed control parameters appropriately, and it can be also guaranteed that all the signals are the semi-global uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the proposed algorithm has been verified via numerical simulations in the presence of the time-varying disturbances.


Sign in / Sign up

Export Citation Format

Share Document