scholarly journals Stability of ann-Dimensional Mixed-Type Additive and Quadratic Functional Equation in Random Normed Spaces

2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Yang-Hi Lee ◽  
Soon-Mo Jung

We investigate the stability problems for then-dimensional mixed-type additive and quadratic functional equation2f(∑j=1nxj)+∑1≤i,j≤n,  i≠jf(xi-xj)=(n+1)∑j=1nf(xj)+(n-1)∑j=1nf(-xj)in random normed spaces by applying the fixed point method.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yang-Hi Lee ◽  
Soon-Mo Jung

We investigate the stability problems for a functional equation2f(∑j=1nxj)+∑1≤i,j≤n,  i≠jf(xi-xj)=(n+1)∑j=1nf(xj)+(n-1)∑j=1nf(-xj)by using the fixed point method.



Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1117
Author(s):  
Maryam Ramezani ◽  
Ozgur Ege ◽  
Manuel De la Sen

In this study, our goal is to apply a new fixed point method to prove the Hyers-Ulam-Rassias stability of a quadratic functional equation in normed spaces which are not necessarily Banach spaces. The results of the present paper improve and extend some previous results.



2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Choonkil Park ◽  
Ji-Hye Kim

Lee, An and Park introduced the quadratic functional equationf(2x+y)+f(2x−y)=8f(x)+2f(y)and proved the stability of the quadratic functional equation in the spirit of Hyers, Ulam and Th. M. Rassias. Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation in Banach spaces.



2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. Ebadian ◽  
M. Eshaghi Gordji ◽  
H. Khodaei ◽  
R. Saadati ◽  
Gh. Sadeghi

At first we find the solution of the functional equation where is an integer number. Then, we obtain the generalized Hyers-Ulam-Rassias stability in random normed spaces via the fixed point method for the above functional equation.



Sign in / Sign up

Export Citation Format

Share Document