stability problems
Recently Published Documents


TOTAL DOCUMENTS

830
(FIVE YEARS 67)

H-INDEX

36
(FIVE YEARS 3)

CrystEngComm ◽  
2022 ◽  
Author(s):  
Liyu Liu ◽  
Jian-Rong Wang ◽  
Xuefeng Mei

Cocrystallization has been recognized as one of the most successful approaches to address stability problems of active pharmaceutical ingredients (APIs) in the past few decades. However, scant attention has been...


2022 ◽  
Vol 259 ◽  
pp. 106685
Author(s):  
E. Mendes ◽  
R. Sivapuram ◽  
R. Rodriguez ◽  
M. Sampaio ◽  
R. Picelli

2021 ◽  
Author(s):  
Salah Bahlany ◽  
Mohammed Maharbi ◽  
Saud Zakwani ◽  
Faisal Busaidi ◽  
Ferrante Benvenuti

Abstract Wellbore stability problems, such as stuck pipe and tight spots, are one of the most critical risks that impact drilling operations. Over several years, Oil and Gas Operator in Middle East has been facing problems associated with stuck pipe and tight spot events, which have a major impact on drilling efficiency, well cost, and the carbon footprint of drilling operations. On average, the operator loses 200 days a year (Non-Productive Time) on stuck pipe and associated fishing operations. Wellbore stability problems are hard to predict due to the varying conditions of drilling operations: different lithology, drilling parameters, pressures, equipment, shifting crews, and multiple well designs. All these factors make the occurrence of a stuck pipe quite hard to mitigate only through human intervention. For this reason, The operator decided to develop an artificial intelligence tool that leverages the whole breadth and depth of operator data (reports, sensor data, well engineering data, lithology data, etc.) in order to predict and prevent wellbore stability problems. The tool informs well engineers and rig crews about possible risks both during the well planning and well execution phase, suggesting possible mitigation actions to avoid getting stuck. Since the alarms are given ahead of the bit, several hours before the possible occurrence of the event, the well engineers and rig crews have ample time to react to the alarms and prevent its occurrence. So far, the tool has been deployed in a pilot phase on 38 wells giving 44 true alarms with a recall of 94%. Since mid-2021 operator has been rolling out the tool scaling to the whole drilling operations (over 40 rigs).


2021 ◽  
Vol 2131 (3) ◽  
pp. 032019
Author(s):  
A Karaulov ◽  
D Nemtzev ◽  
A Konkov ◽  
V Shekhov

Abstract The questions of linear programming methods application to the main problems of stability theory - problems on slope stability, problems on ultimate pressure of soil on enclosures (case of landslide pressure), and problems on bearing capacity of horizontal base of a die are considered. The problems of stability theory are formulated as linear programming tasks. It is shown that the given systems of equations are linear with respect to the unknowns and may be solved by the Simplex method. The results of soil stability problems calculation by Simplex method are compared with the results of calculations according to the most known classical schemes. It is shown that a great scatter of final results is observed in calculating the stability of slopes by classical methods, and in this case, the results obtained by the Simplex method are the most trustworthy ones. The situation with landslide pressure definition is especially complicated in this sense where classical methods give a scatter of landslide pressure values by several times. It is established that with increasing discretization of the computational domain, the results tend to exact solutions of the limit equilibrium theory, obtained, for example, by the method of characteristics. The latter point is illustrated using the example of the problem of a die pushing into a ground massif with a Hill scheme bulge.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7374
Author(s):  
Orest Lozynskyy ◽  
Damian Mazur ◽  
Yaroslav Marushchak ◽  
Bogdan Kwiatkowski ◽  
Andriy Lozynskyy ◽  
...  

The article presents the creation of characteristic polynomials on the basis of fractional powers j of dynamic systems and problems related to the determination of the stability intervals of such systems.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6129
Author(s):  
Xuan-Yi Xue ◽  
Da-Wei Du ◽  
Jun-Yi Sun ◽  
Xiao-Ting He

In the design of cantilevered balconies of buildings, many stability problems exist concerning vertical plates, in which reaching a critical load plays an important role during the stability analysis of the plate. At the same time, the concrete forming vertical plate, as a typical brittle material, has larger compressive strength but lower tensile strength, which means the tensile and compression properties of concrete are different. However, due to the complexities of such analyses, this difference has not been considered. In this study, the variational method is used to analyze stability problems of cantilever vertical plates with bimodular effect, in which different loading conditions and plate shapes are also taken into account. For the effective implementation of a variational method, the bending strain energy based on bimodular theory is established first, and critical loads of four stability problems are obtained. The results indicate that the bimodular effect, as well as different loading types and plate shapes, have influences on the final critical loads, resulting in varying degrees of buckling. In particular, if the average value of the tensile modulus and compressive modulus remain unchanged, the introduction of the bimodular effect will weaken, to some extent, the bending stiffness of the plate. Among the four stability problems, a rectangular plate with its top and bottom loaded is most likely to buckle; next is a rectangular plate with its top loaded, followed by a triangular plate with its bottom loaded. A rectangular plate with its bottom loaded is least likely to buckle. This work may serve as a theoretical reference for the refined analysis of vertical plates. Plates are made of concrete or similar material whose bimodular effect is relatively obvious and cannot be ignored arbitrarily; otherwise the greater inaccuracies will be encountered in building designs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dragan D. Milašinović ◽  
Ljiljana Kozarić ◽  
Smilja Bursać ◽  
Miroslav Bešević ◽  
Ilija Miličić ◽  
...  

PurposeThe purpose of this paper is to contribute to the solution of the buckling and resonance stability problems in inelastic beams and wooden plane trusses, taking into account geometric and material defects.Design/methodology/approachTwo sources of non-linearity are analyzed, namely the geometrical non-linearity due to geometrical imperfections and material non-linearity due to material defects. The load-bearing capacity is obtained by the rheological-dynamical analogy (RDA). The RDA inelastic theory is used in conjunction with the damage mechanics to analyze the softening behavior with the scalar damage variable for stiffness reduction. Based on the assumed damages in the wooden truss, the corresponding external masses are calculated in order to obtain the corresponding fundamental frequencies, which are compared with the measured ones.FindingsRDA theory uses rheology and dynamics to determine the structures' response, those results in the post-buckling branch can then be compared by fracture mechanics. The RDA method uses the measured P and S wave velocities, as well as fundamental frequencies to find material properties at the limit point. The verification examples confirmed that the RDA theory is more suitable than other non-linear theories, as those proved to be overly complex in terms of their application to the real structures with geometrical and material defects.Originality/valueThe paper presents a novel method of solving the buckling and resonance stability problems in inelastic beams and wooden plane trusses with initial defects. The method is efficient as it provides explanations highlighting that an inelastic beam made of ductile material can break in any stage from brittle to extremely ductile, depending on the value of initial imperfections. The characterization of the internal friction and structural damping via the damping ratio is original and effective.


2021 ◽  
Author(s):  
Stefan Krüger ◽  
Katja Aschenberg

Abstract The revised SOLAS 2020 damage stability regulations have a strong impact on possible future ship designs. To cope with these requirements, damage stability investigations must become a central part of the initial design phase, and many internal subdivision concepts need to be investigated. Unfortunately, if damage stability calculations are performed in the classical way, they are very time consuming with respect to modelling and computational time. This fact has impeded the consequent subdivision optimization in the past. Therefore, a simulation procedure for damage stability problems was developed which treats damage stability as a stochastic process which was modeled by a Monte Carlo simulation. If statistical damage distributions are once known, the Monte Carlo simulation delivers a population of damages which can be automatically related to certain damage cases. These damage cases can then be investigated with respect to their survivability. Applying this principle to damage stability problems reduces the computational effort drastically where at the same time no more manual modelling is required. This development does especially support the initial design phase of the compartmentation and leads to a safer and more efficient design. If this very efficient simulation principle shall now also be used after the initial design phase for the generation of approval documents, additional information needs to be generated by the simulation method which is not directly obtained during the simulation: This includes detailed individual probabilities in all three directions and the integration of all damage cases into predefined damage zones. This results in fact in a kind of reverse engineering of the manual damage stability process to automatically obtain this required information. It can be demonstrated that the time to obtain the final documents for the damage stability approval can be drastically reduced by implementing this principle.


Sign in / Sign up

Export Citation Format

Share Document