scholarly journals Trigonometric Approximation of Signals (Functions) Belonging toW(Lr, ξ(t))Class by Matrix(C1·Np)Operator

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Uaday Singh ◽  
M. L. Mittal ◽  
Smita Sonker

Various investigators such as Khan (1974), Chandra (2002), and Liendler (2005) have determined the degree of approximation of 2π-periodic signals (functions) belonging to Lip(α,r)class of functions through trigonometric Fourier approximation using different summability matrices with monotone rows. Recently, Mittal et al. (2007 and 2011) have obtained the degree of approximation of signals belonging to Lip(α,r)- class by general summability matrix, which generalize some of the results of Chandra (2002) and results of Leindler (2005), respectively. In this paper, we determine the degree of approximation of functions belonging to Lip αandW(Lr,ξ(t)) classes by using Cesáro-Nörlund(C1·Np)summability without monotonicity condition on{pn}, which in turn generalizes the results of Lal (2009). We also note some errors appearing in the paper of Lal (2009) and rectify them in the light of observations of Rhoades et al. (2011).

2016 ◽  
Vol 09 (01) ◽  
pp. 1650009 ◽  
Author(s):  
M. L. Mittal ◽  
Mradul Veer Singh

Mittal, Rhoades (1999–2001), Mittal et al. (2005, 2006, 2011) have initiated a study of error estimates through trigonometric Fourier approximation (tfa) for the situation in which the summability matrix [Formula: see text] does not have monotone rows. Recently Mohanty et al. (2011) have obtained a theorem on the degree of approximation of functions in Besov space [Formula: see text] by choosing [Formula: see text] to be a Nörlund ([Formula: see text])-matrix with non-increasing weights [Formula: see text]. In this paper, we continue the work of Mittal et al. and extend the result of Mohanty et al. (2011) to the general matrix [Formula: see text].


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abhishek Mishra ◽  
Vishnu Narayan Mishra ◽  
M. Mursaleen

AbstractIn this paper, we establish a new estimate for the degree of approximation of functions $f(x,y)$ f ( x , y ) belonging to the generalized Lipschitz class $Lip ((\xi _{1}, \xi _{2} );r )$ L i p ( ( ξ 1 , ξ 2 ) ; r ) , $r \geq 1$ r ≥ 1 , by double Hausdorff matrix summability means of double Fourier series. We also deduce the degree of approximation of functions from $Lip ((\alpha ,\beta );r )$ L i p ( ( α , β ) ; r ) and $Lip(\alpha ,\beta )$ L i p ( α , β ) in the form of corollary. We establish some auxiliary results on trigonometric approximation for almost Euler means and $(C, \gamma , \delta )$ ( C , γ , δ ) means.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
M. L. Mittal ◽  
Mradul Veer Singh

We prove two Theorems on approximation of functions belonging to Lipschitz classLip(α,p)inLp-norm using Cesàro submethod. Further we discuss few corollaries of our Theorems and compare them with the existing results. We also note that our results give sharper estimates than the estimates in some of the known results.


2018 ◽  
Vol 51 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Ram N. Mohapatra ◽  
Bogdan Szal

Abstract In this paper we obtain a degree of approximation of functions in Lq by operators associated with their Fourier series using integral modulus of continuity. These results generalize many known results and are proved under less stringent conditions on the infinite matrix.


Author(s):  
M. L. Mittal ◽  
B. E. Rhoades ◽  
Vishnu Narayan Mishra

Mittal and Rhoades (1999–2001) and Mittal et al. (2006) have initiated the studies of error estimatesEn(f)through trigonometric Fourier approximations (TFA) for the situations in which the summability matrixTdoes not have monotone rows. In this paper, we determine the degree of approximation of a functionf˜, conjugate to a periodic functionfbelonging to the weightedW(Lp,ξ(t))-class(p≥1), whereξ(t)is nonnegative and increasing function oftby matrix operatorsT(without monotone rows) on a conjugate series of Fourier series associated withf. Our theorem extends a recent result of Mittal et al. (2005) and a theorem of Lal and Nigam (2001) on general matrix summability. Our theorem also generalizes the results of Mittal, Singh, and Mishra (2005) and Qureshi (1981-1982) for Nörlund(Np)-matrices.


Author(s):  
T. O. Petrova ◽  
I. P. Chulakov

We discuss whether on not it is possible to have interpolatory estimates in the approximation of a function $f є W^r [0,1]$ by polynomials. The problem of positive approximation is to estimate the pointwise degree of approximation of a function $f є C^r [0,1] \cap \Delta^0$ where $\Delta^0$ is the set of positive functions on [0,1]. Estimates of the form (1) for positive approximation are known ([1],[2]). The problem of monotone approximation is that of estimating the degree of approximation of a monotone nondecreasing function by monotone nondecreasing polynomials. Estimates of the form (1) for monotone approximation were proved in [3],[4],[8]. In [3],[4] is consider $r є , r > 2$. In [8] is consider $r є , r > 2$. It was proved that for monotone approximation estimates of the form (1) are fails for $r є , r > 2$. The problem of convex approximation is that of estimating the degree of approximation of a convex function by convex polynomials. The problem of convex approximation is that of estimating the degree of approximation of a convex function by convex polynomials. The problem of convex approximation is consider in ([5],[6]). In [5] is consider $r є , r > 2$. In [6] is consider $r є , r > 2$. It was proved that for convex approximation estimates of the form (1) are fails for $r є , r > 2$. In this paper the question of approximation of function $f є W^r \cap \Delta^1, r є (3,4)$ by algebraic polynomial $p_n є \Pi_n \cap \Delta^1$ is consider. The main result of the work generalize the result of work [8] for $r є (3,4)$.


1972 ◽  
Vol 6 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Badri N. Sahney ◽  
V. Venu Gopal Rao

Let f(x) ε Lipα, 0 < α < 1, in the range (-π, π), and periodic with period 2π, outside this range. Also let.We define the norm asand let the degree of approximation be given bywhere Tn (x) is some n–th trigonometric polynomial.


Sign in / Sign up

Export Citation Format

Share Document