scholarly journals Error bounds in the approximation of functions

1972 ◽  
Vol 6 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Badri N. Sahney ◽  
V. Venu Gopal Rao

Let f(x) ε Lipα, 0 < α < 1, in the range (-π, π), and periodic with period 2π, outside this range. Also let.We define the norm asand let the degree of approximation be given bywhere Tn (x) is some n–th trigonometric polynomial.

1972 ◽  
Vol 6 (3) ◽  
pp. 480-480
Author(s):  
Badri N. Sahney ◽  
V. Venu Gopal Rao

The following corrections should be made in the authors' paper [2]: Replace p. 12, line 4 by ‖f−Nn‖p, = 0(1/nα),The author's theorems are contained as special cases in [1], Theorem 1.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abhishek Mishra ◽  
Vishnu Narayan Mishra ◽  
M. Mursaleen

AbstractIn this paper, we establish a new estimate for the degree of approximation of functions $f(x,y)$ f ( x , y ) belonging to the generalized Lipschitz class $Lip ((\xi _{1}, \xi _{2} );r )$ L i p ( ( ξ 1 , ξ 2 ) ; r ) , $r \geq 1$ r ≥ 1 , by double Hausdorff matrix summability means of double Fourier series. We also deduce the degree of approximation of functions from $Lip ((\alpha ,\beta );r )$ L i p ( ( α , β ) ; r ) and $Lip(\alpha ,\beta )$ L i p ( α , β ) in the form of corollary. We establish some auxiliary results on trigonometric approximation for almost Euler means and $(C, \gamma , \delta )$ ( C , γ , δ ) means.


Author(s):  
T. O. Petrova ◽  
I. P. Chulakov

We discuss whether on not it is possible to have interpolatory estimates in the approximation of a function $f є W^r [0,1]$ by polynomials. The problem of positive approximation is to estimate the pointwise degree of approximation of a function $f є C^r [0,1] \cap \Delta^0$ where $\Delta^0$ is the set of positive functions on [0,1]. Estimates of the form (1) for positive approximation are known ([1],[2]). The problem of monotone approximation is that of estimating the degree of approximation of a monotone nondecreasing function by monotone nondecreasing polynomials. Estimates of the form (1) for monotone approximation were proved in [3],[4],[8]. In [3],[4] is consider $r є , r > 2$. In [8] is consider $r є , r > 2$. It was proved that for monotone approximation estimates of the form (1) are fails for $r є , r > 2$. The problem of convex approximation is that of estimating the degree of approximation of a convex function by convex polynomials. The problem of convex approximation is that of estimating the degree of approximation of a convex function by convex polynomials. The problem of convex approximation is consider in ([5],[6]). In [5] is consider $r є , r > 2$. In [6] is consider $r є , r > 2$. It was proved that for convex approximation estimates of the form (1) are fails for $r є , r > 2$. In this paper the question of approximation of function $f є W^r \cap \Delta^1, r є (3,4)$ by algebraic polynomial $p_n є \Pi_n \cap \Delta^1$ is consider. The main result of the work generalize the result of work [8] for $r є (3,4)$.


Author(s):  
Minaketan Das

AbstractLet a1, a2,… be a sequence of mutually independent, normally distributed, random variables with mathematical expectation zero and variance unity; let b1, b2,… be a set of positive constants. In this work, we obtain the average number of zeros in the interval (0, 2π) of trigonometric polynomials of the formfor large n. The case when bk = kσ (σ > − 3/2;) is studied in detail. Here the required average is (2σ + 1/2σ + 3)½.2n + o(n) for σ ≥ − ½ and of order n3/2; + σ in the remaining cases.


1972 ◽  
Vol 13 (3) ◽  
pp. 271-276 ◽  
Author(s):  
G. C. Jain

Various extensions and generalizations of Bernstein polynomials have been considered among others by Szasz [13], Meyer-Konig and Zeller [8], Cheney and Sharma [1], Jakimovski and Leviatan [4], Stancu [12], Pethe and Jain [11]. Bernstein polynomials are based on binomial and negative binomial distributions. Szasz and Mirakyan [9] have defined another operator with the help of the Poisson distribution. The operator has approximation properties similar to those of Bernstein operators. Meir and Sharma [7] and Jam and Pethe [3] deal with generalizations of Szasz-Mirakyan operator. As another generalization, we define in this paper a new operator with the help of a Poisson type distribution, consider its convergence properties and give its degree of approximation. The results for the Szasz-Mirakyan operator can easily be obtained from our operator as a particular case.


1966 ◽  
Vol 18 ◽  
pp. 389-398 ◽  
Author(s):  
Daniel Rider

Let G be a compact abelian group and E a subset of its dual group Γ. A function ƒ ∈ L1(G) is called an E-function if for all γ ∉ E wheredx is the Haar measure on G. A trigonometric polynomial that is also an E-function is called an E-polynomial.


1972 ◽  
Vol 15 (4) ◽  
pp. 551-557 ◽  
Author(s):  
S. P. Pethe ◽  
G. C. Jain

Various generalizations of the Bernstein operator, defined on C[0, 1] by the relation1.1wherehave been given. Note that bnk(x) is the well-known binomial distribution.


Sign in / Sign up

Export Citation Format

Share Document