scholarly journals Nonstationary Fronts in the Singularly Perturbed Power-Society Model

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
M. G. Dmitriev ◽  
A. A. Pavlov ◽  
A. P. Petrov

The theory of contrasting structures in singularly perturbed boundary problems for nonlinear parabolic partial differential equations is applied to the research of formation of steady state distributions of power within the nonlinear “power-society” model. The interpretations of the solutions to the equation are presented in terms of applied model. The possibility theorem for the problem of getting the solution having some preassigned properties by means of parametric control is proved.

Author(s):  
Mohamed A. Bouatta ◽  
Sergey A. Vasilyev ◽  
Sergey I. Vinitsky

The asymptotic method is a very attractive area of applied mathematics. There are many modern research directions which use a small parameter such as statistical mechanics, chemical reaction theory and so on. The application of the Fokker-Planck equation (FPE) with a small parameter is the most popular because this equation is the parabolic partial differential equations and the solutions of FPE give the probability density function. In this paper we investigate the singularly perturbed Cauchy problem for symmetric linear system of parabolic partial differential equations with a small parameter. We assume that this system is the Tikhonov non-homogeneous system with constant coefficients. The paper aims to consider this Cauchy problem, apply the asymptotic method and construct expansions of the solutions in the form of two-type decomposition. This decomposition has regular and border-layer parts. The main result of this paper is a justification of an asymptotic expansion for the solutions of this Cauchy problem. Our method can be applied in a wide variety of cases for singularly perturbed Cauchy problems of Fokker-Planck equations.


Author(s):  
Guy Mahler

We show the existence of weak solutions of nonlinear parabolic partial differential equations in unbounded domains, provided that a variant of the Leray-Lions conditions is satisfied.


Sign in / Sign up

Export Citation Format

Share Document