perturbed system
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 63)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Cosme Duque ◽  
Hugo Leiva ◽  
Abdessamad Tridane

AbstractThis paper aims to study the relative equivalence of the solutions of the following dynamic equations $y^{\Delta }(t)=A(t)y(t)$ y Δ ( t ) = A ( t ) y ( t ) and $x^{\Delta }(t)=A(t)x(t)+f(t,x(t))$ x Δ ( t ) = A ( t ) x ( t ) + f ( t , x ( t ) ) in the sense that if $y(t)$ y ( t ) is a given solution of the unperturbed system, we provide sufficient conditions to prove that there exists a family of solutions $x(t)$ x ( t ) for the perturbed system such that $\Vert y(t)-x(t) \Vert =o( \Vert y(t) \Vert )$ ∥ y ( t ) − x ( t ) ∥ = o ( ∥ y ( t ) ∥ ) , as $t\rightarrow \infty $ t → ∞ , and conversely, given a solution $x(t)$ x ( t ) of the perturbed system, we give sufficient conditions for the existence of a family of solutions $y(t)$ y ( t ) for the unperturbed system, and such that $\Vert y(t)-x(t) \Vert =o( \Vert x(t) \Vert )$ ∥ y ( t ) − x ( t ) ∥ = o ( ∥ x ( t ) ∥ ) , as $t\rightarrow \infty $ t → ∞ ; and in doing so, we have to extend Rodrigues inequality, the Lyapunov exponents, and the polynomial exponential trichotomy on time scales.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3317
Author(s):  
Cemil Tunç ◽  
Yuanheng Wang ◽  
Osman Tunç ◽  
Jen-Chih Yao

This paper is concerned with certain non-linear unperturbed and perturbed systems of integro-delay differential equations (IDDEs). We investigate fundamental properties of solutions such as uniformly stability (US), uniformly asymptotically stability (UAS), integrability and instability of the un-perturbed system of the IDDEs as well as the boundedness of the perturbed system of IDDEs. In this paper, five new and improved fundamental qualitative results, which have less conservative conditions, are obtained on the mentioned fundamental properties of solutions. The technique used in the proofs depends on Lyapunov-Krasovski functionals (LKFs). In particular cases, three examples and their numerical simulations are provided as numerical applications of this paper. This paper provides new, extensive and improved contributions to the theory of IDDEs.


2021 ◽  
Author(s):  
M. E. Elbrolosy

Abstract This work is interested in constructing new traveling wave solutions for the coupled nonlinear Schrödinger type equations. It is shown that the equations can be converted to a conservative Hamiltonian traveling wave system. By using the bifurcation theory and Qualitative analysis, we assign the permitted intervals of real propagation. The conserved quantity is utilized to construct sixteen traveling wave solutions; four periodic, two kink, and ten singular solutions. The periodic and kink solutions are analyzed numerically considering the affect of varying each parameter keeping the others fixed. The degeneracy of the solutions discussed through the transmission of the orbits illustrates the consistency of the solutions. The 3D and 2D graphical representations for solutions are presented. Finally, we investigate numerically the quasi-periodic behavior for the perturbed system after inserting a periodic term.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 951
Author(s):  
Sergey Kravtsov ◽  
Anastasios A. Tsonis

Dynamical systems like the one described by the three-variable Lorenz-63 model may serve as metaphors for complex natural systems such as climate systems. When these systems are perturbed by external forcing factors, they tend to relax back to their equilibrium conditions after the forcing has shut off. Here we investigate the behavior of such transients in the Lorenz-63 model by studying its trajectories initialized far away from the asymptotic attractor. Counterintuitively, these transient trajectories exhibit complex routes and, in particular, the sensitivity to initial conditions is akin to that of the asymptotic behavior on the attractor. Thus, similar extreme events may lead to widely different variations before the perturbed system returns back to its statistical equilibrium.


2021 ◽  
Vol 31 (09) ◽  
pp. 2150137
Author(s):  
Oskar A. Sultanov

An autonomous system of ordinary differential equations on the plane with a center-saddle bifurcation is considered. The influence of a class of time damped perturbations is investigated. The particular solutions tending to the fixed points of the limiting system are considered. The stability of these solutions is analyzed by Lyapunov function method when the bifurcation parameter of the unperturbed system takes critical and noncritical values. Conditions that ensure the persistence of the bifurcation in the perturbed system are described. When the bifurcation is broken, a pair of solutions tending to a degenerate fixed point of the limiting system appears in the critical case. It is shown that, depending on the structure and the parameters of the perturbations, one of these solutions can be stable, metastable or unstable, while the other solution is always unstable. The proposed theory is applied to the study of autoresonance capturing in systems with quadratically varying driving frequency.


2021 ◽  
Author(s):  
Yanggeng Fu ◽  
Jibin Li

Abstract In this paper, we study the bifurcations of invariant torus and knotted periodic orbits for generalized Hopf-Langford type equations. By using bifurcation theory of dynamical systems, we obtain the exact explicit form of the heteroclinic orbits and knot periodic orbits. Moreover, under small perturbation, we prove that the perturbed planar system has two symmetric stable limit cycles created by Poincare bifurcations. Therefore, the corresponding three-dimensional perturbed system has an attractive invariant rotation torus.


Sign in / Sign up

Export Citation Format

Share Document