scholarly journals A Fully Discrete Symmetric Finite Volume Element Approximation of Nonlocal Reactive Flows in Porous Media

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zhe Yin ◽  
Qiang Xu

We study symmetric finite volume element approximations for two-dimensional parabolic integrodifferential equations, arising in modeling of nonlocal reactive flows in porous media. It is proved that symmetric finite volume element approximations are convergent with optimal order inL2-norm. Numerical example is presented to illustrate the accuracy of our method.

Computing ◽  
2000 ◽  
Vol 64 (2) ◽  
pp. 157-182 ◽  
Author(s):  
R. E. Ewing ◽  
R. D. Lazarov ◽  
Y. Lin

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Qing Yang

A finite volume element method for approximating the solution to two-dimensional Burgers equation is presented. Upwind technique is applied to handle the nonlinear convection term. We present the semi-discrete scheme and fully discrete scheme, respectively. We show that the schemes are convergent to order one in space inL2-norm. Numerical experiment is presented finally to validate the theoretical analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Sarvesh Kumar ◽  
Sangita Yadav

The incompressible miscible displacement problem in porous media is modeled by a coupled system of two nonlinear partial differential equations, the pressure-velocity equation and the concentration equation. In this paper, we present a mixed finite volume element method (FVEM) for the approximation of the pressure-velocity equation. Since modified method of characteristics (MMOC) minimizes the grid orientation effect, for the approximation of the concentration equation, we apply a standard FVEM combined with MMOC. A priori error estimates in L∞(L2) norm are derived for velocity, pressure and concentration. Numerical results are presented to substantiate the validity of the theoretical results.


2014 ◽  
Vol 6 (5) ◽  
pp. 615-636 ◽  
Author(s):  
Zhendong Luo

AbstractA semi-discrete scheme about time for the non-stationary Navier-Stokes equations is presented firstly, then a new fully discrete finite volume element (FVE) formulation based on macroelement is directly established from the semi-discrete scheme about time. And the error estimates for the fully discrete FVE solutions are derived by means of the technique of the standard finite element method. It is shown by numerical experiments that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the FVE method is feasible and efficient for finding the numerical solutions of the non-stationary Navier-Stokes equations and it is one of the most effective numerical methods among the FVE formulation, the finite element formulation, and the finite difference scheme.


2017 ◽  
Vol 27 (3) ◽  
pp. 515-525 ◽  
Author(s):  
Jin-Liang Yan ◽  
Liang-Hong Zheng

AbstractThe aim of this paper is to build and validate a class of energy-preserving schemes for simulating a complex modified Korteweg–de Vries equation. The method is based on a combination of a discrete variational derivative method in time and finite volume element approximation in space. The resulting scheme is accurate, robust and energy-preserving. In addition, for comparison, we also develop a momentum-preserving finite volume element scheme and an implicit midpoint finite volume element scheme. Finally, a complete numerical study is developed to investigate the accuracy, conservation properties and long time behaviors of the energy-preserving scheme, in comparison with the momentum-preserving scheme and the implicit midpoint scheme, for the complex modified Korteweg–de Vries equation.


Sign in / Sign up

Export Citation Format

Share Document