scholarly journals A Global Optimization Algorithm for Sum of Linear Ratios Problem

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yuelin Gao ◽  
Siqiao Jin

We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.

Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 867 ◽  
Author(s):  
X. Liu ◽  
Y.L. Gao ◽  
B. Zhang ◽  
F.P. Tian

In this paper, we propose a new global optimization algorithm, which can better solve a class of linear fractional programming problems on a large scale. First, the original problem is equivalent to a nonlinear programming problem: It introduces p auxiliary variables. At the same time, p new nonlinear equality constraints are added to the original problem. By classifying the coefficient symbols of all linear functions in the objective function of the original problem, four sets are obtained, which are I i + , I i − , J i + and J i − . Combined with the multiplication rule of real number operation, the objective function and constraint conditions of the equivalent problem are linearized into a lower bound linear relaxation programming problem. Our lower bound determination method only needs e i T x + f i ≠ 0 , and there is no need to convert molecules to non-negative forms in advance for some special problems. A output-space branch and bound algorithm based on solving the linear programming problem is proposed and the convergence of the algorithm is proved. Finally, in order to illustrate the feasibility and effectiveness of the algorithm, we have done a series of numerical experiments, and show the advantages and disadvantages of our algorithm by the numerical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yuelin Gao ◽  
Feifei Li ◽  
Siqiao Jin

We propose a branch and bound reduced algorithm for quadratic programming problems with quadratic constraints. In this algorithm, we determine the lower bound of the optimal value of original problem by constructing a linear relaxation programming problem. At the same time, in order to improve the degree of approximation and the convergence rate of acceleration, a rectangular reduction strategy is used in the algorithm. Numerical experiments show that the proposed algorithm is feasible and effective and can solve small- and medium-sized problems.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Chun-Feng Wang ◽  
Yan-Qin Bai

This paper presents a new global optimization algorithm for solving a class of linear multiplicative programming (LMP) problem. First, a new linear relaxation technique is proposed. Then, to improve the convergence speed of our algorithm, two pruning techniques are presented. Finally, a branch and bound algorithm is developed for solving the LMP problem. The convergence of this algorithm is proved, and some experiments are reported to illustrate the feasibility and efficiency of this algorithm.


2009 ◽  
Vol 15 (2) ◽  
pp. 310-325 ◽  
Author(s):  
Remigijus Paulavičius ◽  
Julius Žilinskas

Many problems in economy may be formulated as global optimization problems. Most numerically promising methods for solution of multivariate unconstrained Lipschitz optimization problems of dimension greater than 2 use rectangular or simplicial branch‐and‐bound techniques with computationally cheap, but rather crude lower bounds. The proposed branch‐and‐bound algorithm with simplicial partitions for global optimization uses a combination of 2 types of Lipschitz bounds. One is an improved Lipschitz bound with the first norm. The other is a combination of simple bounds with different norms. The efficiency of the proposed global optimization algorithm is evaluated experimentally and compared with the results of other well‐known algorithms. The proposed algorithm often outperforms the comparable branch‐and‐bound algorithms. Santrauka Daug įvairių ekonomikos uždavinių yra formuluojami kaip globaliojo optimizavimo uždaviniai. Didžioji dalis Lipšico globaliojo optimizavimo metodų, tinkamų spręsti didesnės dimensijos, t. y. n > 2, uždavinius, naudoja stačiakampį arba simpleksinį šakų ir rėžių metodus bei paprastesnius rėžius. Šiame darbe pasiūlytas simpleksinis šakų ir rėžių algoritmas, naudojantis dviejų tipų viršutinių rėžių junginį. Pirmasis yra pagerintas rėžis su pirmąja norma, kitas – trijų paprastesnių rėžių su skirtingomis normomis junginys. Gautieji eksperimentiniai pasiūlyto algoritmo rezultatai yra palyginti su kitų gerai žinomų Lipšico optimizavimo algoritmų rezultatais.


2008 ◽  
Vol 13 (4) ◽  
pp. 553-563 ◽  
Author(s):  
Remigijus Paulavičius ◽  
Julius Žilinskas

A branch and bound algorithm for global optimization is proposed, where the maximum of an upper bounding function based on Lipschitz condition and the first norm over a simplex is used as the upper bound of function. In this case the graph of bounding function is intersection of n‐dimensional pyramids and its maximum point is found solving a system of linear equations. The efficiency of the proposed global optimization algorithm is evaluated experimentally.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xue-Ping Hou ◽  
Pei-Ping Shen ◽  
Yong-Qiang Chen

This paper presents a global optimization algorithm for solving the signomial geometric programming (SGP) problem. In the algorithm, by the straight forward algebraic manipulation of terms and by utilizing a transformation of variables, the initial nonconvex programming problem (SGP) is first converted into an equivalent monotonic optimization problem and then is reduced to a sequence of linear programming problems, based on the linearizing technique. To improve the computational efficiency of the algorithm, two range reduction operations are combined in the branch and bound procedure. The proposed algorithm is convergent to the global minimum of the (SGP) by means of the subsequent solutions of a series of relaxation linear programming problems. And finally, the numerical results are reported to vindicate the feasibility and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document