scholarly journals A General Iteration Formula of VIM for Fractional Heat- and Wave-Like Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Xiaoqun Cao

A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Guo-Cheng Wu

Recently, Liu extended He's variational iteration method to strongly nonlinearq-difference equations. In this study, the iteration formula and the Lagrange multiplier are given in a more accurate way. Theq-oscillation equation of second order is approximately solved to show the new Lagrange multiplier's validness.


2013 ◽  
Vol 17 (3) ◽  
pp. 715-721 ◽  
Author(s):  
Chun-Feng Liu ◽  
Shan-Shan Kong ◽  
Shu-Juan Yuan

A reconstructive scheme for variational iteration method using the Yang-Laplace transform is proposed and developed with the Yang-Laplace transform. The identification of fractal Lagrange multiplier is investigated by the Yang-Laplace transform. The method is exemplified by a fractal heat conduction equation with local fractional derivative. The results developed are valid for a compact solution domain with high accuracy.


2020 ◽  
Vol 20 (3) ◽  
pp. 661-672
Author(s):  
JAWARIA TARIQ ◽  
JAMSHAD AHMAD

In this work, a new emerging analytical techniques variational iteration method combine with Aboodh transform has been applied to find out the significant important analytical and convergent solution of some mathematical models of fractional order. These mathematical models are of great interest in engineering and physics. The derivative is in Caputo’s sense. These analytical solutions are continuous that can be used to understand the physical phenomena without taking interpolation concept. The obtained solutions indicate the validity and great potential of Aboodh transform with the variational iteration method and show that the proposed method is a good scheme. Graphically, the movements of some solutions are presented at different values of fractional order.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. Jafari ◽  
Abdelouahab Kadem ◽  
D. Baleanu

This paper presents approximate analytical solutions for the fractional-order Brusselator system using the variational iteration method. The fractional derivatives are described in the Caputo sense. This method is based on the incorporation of the correction functional for the equation. Two examples are solved as illustrations, using symbolic computation. The numerical results show that the introduced approach is a promising tool for solving system of linear and nonlinear fractional differential equations.


Sign in / Sign up

Export Citation Format

Share Document