physical phenomena
Recently Published Documents


TOTAL DOCUMENTS

2161
(FIVE YEARS 666)

H-INDEX

51
(FIVE YEARS 10)

Geotechnics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 91-113
Author(s):  
Adam G. Taylor ◽  
Jae H. Chung

The present paper provides a qualitative discussion of the evolution of contact traction fields beneath rigid shallow foundations resting on granular materials. A phenomenological similarity is recognized in the measured contact traction fields of rigid footings and at the bases of sandpiles. This observation leads to the hypothesis that the stress distributions are brought about by the same physical phenomena, namely the development of arching effects through force chains and mobilized intergranular friction. A set of semi-empirical equations are suggested for the normal and tangential components of this contact traction based on past experimental measurements and phenomenological assumptions of frictional behaviors at the foundation system scale. These equations are then applied to the prescribed boundary conditions for the analysis of the settlement, resistance, and stress fields in supporting granular materials beneath the footing. A parametric sensitivity study is performed on the proposed modelling method, highlighting solutions to the boundary-value problems in an isotropic, homogeneous elastic half-space.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 40
Author(s):  
Sergio Miguel-Tomé ◽  
Ángel L. Sánchez-Lázaro ◽  
Luis Alonso-Romero

The central goal of this manuscript is to survey the relationships between fundamental physics and computer science. We begin by providing a short historical review of how different concepts of computer science have entered the field of fundamental physics, highlighting the claim that the universe is a computer. Following the review, we explain why computational concepts have been embraced to interpret and describe physical phenomena. We then discuss seven arguments against the claim that the universe is a computational system and show that those arguments are wrong because of a misunderstanding of the extension of the concept of computation. Afterwards, we address a proposal to solve Hempel’s dilemma using the computability theory but conclude that it is incorrect. After that, we discuss the relationship between the proposals that the universe is a computational system and that our minds are a simulation. Analysing these issues leads us to proposing a new physical principle, called the principle of computability, which claims that the universe is a computational system (not restricted to digital computers) and that computational power and the computational complexity hierarchy are two fundamental physical constants. On the basis of this new principle, a scientific paradigm emerges to develop fundamental theories of physics: the computer-theoretic framework (CTF). The CTF brings to light different ideas already implicit in the work of several researchers and provides a new view on the universe based on computer theoretic concepts that expands the current view. We address different issues regarding the development of fundamental theories of physics in the new paradigm. Additionally, we discuss how the CTF brings new perspectives to different issues, such as the unreasonable effectiveness of mathematics and the foundations of cognitive science.


2022 ◽  
Vol 9 ◽  
Author(s):  
Wei Guo ◽  
Xiaowei Zhang ◽  
Rongze Yu ◽  
Lixia Kang ◽  
Jinliang Gao ◽  
...  

The flow of shale gas in nano scale pores is affected by multiple physical phenomena. At present, the influence of multiple physical phenomena on the transport mechanism of gas in nano-pores is not clear, and a unified mathematical model to describe these multiple physical phenomena is still not available. In this paper, an apparent permeability model was established, after comprehensively considering three gas flow mechanisms in shale matrix organic pores, including viscous slippage Flow, Knudsen diffusion and surface diffusion of adsorbed gas, and real gas effect and confinement effect, and at the same time considering the effects of matrix shrinkage, stress sensitivity, adsorption layer thinning, confinement effect and real gas effect on pore radius. The contribution of three flow mechanisms to apparent permeability under different pore pressure and pore size is analyzed. The effects of adsorption layer thinning, stress sensitivity, matrix shrinkage effect, real gas effect and confinement effect on apparent permeability were also systematically analyzed. The results show that the apparent permeability first decreases and then increases with the decrease of pore pressure. With the decrease of pore pressure, matrix shrinkage, Knudsen diffusion, slippage effect and surface diffusion effect increase gradually. These four effects will not only make up for the permeability loss caused by stress sensitivity and adsorption layer, but also significantly increase the permeability. With the decrease of pore radius, the contribution of slippage flow decreases, and the contributions of Knudsen diffusion and surface diffusion increase gradually. With the decrease of pore radius and the increase of pore pressure, the influence of real gas effect and confinement effect on permeability increases significantly. Considering real gas and confinement effect, the apparent permeability of pores with radius of 5 nm is increased by 13.2%, and the apparent permeability of pores with radius of 1 nm is increased by 61.3%. The apparent permeability model obtained in this paper can provide a theoretical basis for more accurate measurement of permeability of shale matrix and accurate evaluation of productivity of shale gas horizontal wells.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Satoshi Fujiwara ◽  
Mikio Tobita ◽  
Shinzaburo Ozawa

AbstractPostseismic deformations continue to occur for a long period after major earthquakes. Temporal changes in postseismic deformations can be approximated using simple functions. Since the 2011 Tohoku-Oki earthquake, operating global navigation satellite system stations have been continuously accumulating a remarkable amount of relevant data. To verify the functional model, we performed statistical data processing on postseismic deformations due to this earthquake and obtained their spatiotemporal distribution. Moreover, we approximated the postseismic deformations over a relatively wide area with a standard deviation of residuals of 1 cm for approximately 10 years using a combined functional model of two logarithmic and one exponential functions; however, the residuals from the functional model exhibited a marked deviation since 2015. Although the pattern of postseismic deformations remained unaltered after the earthquake, a change in the linear deformation occurred from 2015 to date. We reduced the overall standard deviation of the residuals of > 200 stations distributed over > 1000 km to < 0.4 cm in the horizontal component by enhancing the functional model to incorporate this linear deformation. Notably, time constants of the functions were similarly applicable for all stations and components. Furthermore, the spatial distribution of the coefficients of each time constant were nonrandom, and the distribution was spatially smooth, with minute changes in the short wavelengths in space. Thus, it is possible to obtain a gridded model in terms of a spatial function. The spatial distributions of short- and long-period components of the functional model and afterslip and viscoelastic relaxation calculated using the physical model were similar to each other, respectively. Each time function revealed a connotation regarding the physical processes, which provided an understanding of the physical phenomena involved in seismogenesis. The functional model can be used to practical applications, such as discerning small variations and modeling for precise positioning. Graphical Abstract


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 197
Author(s):  
Rosalba Liguori ◽  
Antonio Facchetti ◽  
Gian Domenico Licciardo ◽  
Luigi Di Benedetto

In this paper, organic thin film transistors with different configurations are fabricated, and the effect on their performance when tailoring the semiconductor/insulator and semiconductor/contact interfaces through suitable treatments is analyzed. It is shown that the admittance spectroscopy used together with a properly developed electrical model turns out to be a particularly appropriate technique for correlating the performance of devices based on new materials in the manufacturing methods. The model proposed here to describe the equivalent metal–insulator–semiconductor (MIS) capacitor enables the extraction of a wide range of parameters and the study of the physical phenomena occurring in the transistors: diffusion of mobile ions through the insulator, charge trapping at the interfaces, dispersive transport in the semiconductor, and charge injection at the metal contacts. This is necessary to improve performance and stability in the case, like this one, of a novel organic semiconductor being employed. Atomic force microscopy images are also exploited to support the relationship between the semiconductor morphology and the electrical parameters.


2022 ◽  
Author(s):  
Evandro Martin Lanzoni ◽  
Saimon Covre da Silva ◽  
Floris Knopper ◽  
Ailton J Garcia ◽  
Carlos Alberto Rodrigues Costa ◽  
...  

Abstract Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k . p calculation, we show that the confinement comes from the band banding due to the surface Fermi level pinning. Our results indicate that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.


2022 ◽  
Vol 2153 (1) ◽  
pp. 012005
Author(s):  
J P Rojas Suárez ◽  
J A Pabón León ◽  
M S Orjuela Abril

Abstract In the present investigation, an analysis of the fire resistance of the steel-reinforced concrete-filled steel tubular columns with circular cross-sections was carried out by means of numerical simulation. The development of the study was carried out by means of numerical simulation to predict the behavior of the column against fire. The results of the numerical model are validated by comparing the temperature levels obtained through experimental tests. From the results obtained, it is shown that the increase in the contact area between the steel and the concrete reduces the average temperature of the column, which implies a greater resistance to fire. The fire resistance of the columns with the steel profile designs are between 3.4 - 3.6 times higher compared to the column only made of concrete, which is an indication of the excellent performance of the steel-reinforced concrete-filled steel tubular columns with circular cross- sections columns. In general, the methodology proposed in this research allows the analysis of the thermal physical phenomena of the different columns used for the construction of buildings.


Sign in / Sign up

Export Citation Format

Share Document