oscillation equation
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 5 (4) ◽  
pp. 188
Author(s):  
Jun-Sheng Duan ◽  
Di-Chen Hu ◽  
Ming Li

The impulse response of the fractional oscillation equation was investigated, where the damping term was characterized by means of the Riemann–Liouville fractional derivative with the order α satisfying 0≤α≤2. Two different analytical forms of the response were obtained by using the two different methods of inverse Laplace transform. The first analytical form is a series composed of positive powers of t, which converges rapidly for a small t. The second form is a sum of a damped harmonic oscillation with negative exponential amplitude and a decayed function in the form of an infinite integral, where the infinite integral converges rapidly for a large t. Furthermore, the Gauss–Laguerre quadrature formula was used for numerical calculation of the infinite integral to generate an analytical approximation to the response. The asymptotic behaviours for a small t and large t were obtained from the two forms of response. The second form provides more details for the response and is applicable for a larger range of t. The results include that of the integer-order cases, α= 0, 1 and 2.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1119
Author(s):  
Anton P. Broyko ◽  
Ivan K. Khmelnitskiy ◽  
Eugeny A. Ryndin ◽  
Andrey V. Korlyakov ◽  
Nikolay I. Alekseyev ◽  
...  

The article is devoted to the development and creation of a multiphysics simulator that can, on the one hand, simulate the most significant physical processes in the IPMC actuator, and on the other hand, unlike commercial products such as COMSOL, can use computing resources economically. The developed mathematical model is an adjoint differential equation describing the transport of charged particles and water molecules in the ion-exchange membrane, the electrostatic field inside, and the mechanical deformation of the actuator. The distribution of the electrostatic potential in the interelectrode space is located by means of the solution of the Poisson equation with the Dirichlet boundary conditions, where the charge density is a function of the concentration of cations inside the membrane. The cation distribution was obtained by means of the solution of the equation system, in which the fluxes of ions and water molecules are described by the modified Nernst-Planck equations with boundary conditions of the third kind (the Robin problem). The cantilever beam forced oscillation equation in the presence of resistance (allowing for dissipative processes) with assumptions of elasticity theory was used to describe the actuator motion. A combination of the following computational methods was used as a numerical algorithm for the solution: the Poisson equation was solved by a direct method, the modified Nernst-Planck equations were solved by the Newton-Raphson method, and the mechanical oscillation equation was solved using an explicit scheme. For this model, a difference scheme has been created and an algorithm has been described, which can be implemented in any programming language and allows for fast computational experiments. On the basis of the created algorithm and with the help of the obtained experimental data, a program has been created and the verification of the difference scheme and the algorithm has been performed. Model parameters have been determined, and recommendations on the ranges of applicability of the algorithm and the program have been given.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Hongbo Yan ◽  
Enzuo Liu ◽  
Pengbo Zhao ◽  
Pei Liu ◽  
Rui Cao

We studied the chaotic peculiarities of magnetic-mechanical coupled system of GMA. Based on the working principle of GMA and according to Newton’s second law of motion, first piezomagnetic equation, disk spring design theory, and structural dynamics principle of GMA, the present study established a GMA magnetic-mechanical coupled system model. By carrying out data modeling of this coupled system model, the bifurcation chart of the system with the variation of damping factor, excitation force, and exciting frequency parameters as well as the homologous offset oscillogram, phase plane trace chart, and Poincaré diagram was obtained, and the chaotic peculiarities of the system were analyzed. The influence of parametric errors on the coupled system was studied. The analytical results showed that the oscillation equation of the GMA magnetic-mechanical coupled system had nonlinearity and the movement morphology was complicated and diversified. By adjusting the damping factor, exciting frequency, and excitation force parameters of the system, the system could work under the stable interval, which provided theoretical support for the stability design of GMA.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1814 ◽  
Author(s):  
Óscar E. Coronado-Hernández ◽  
Mohsen Besharat ◽  
Vicente S. Fuertes-Miquel ◽  
Helena M. Ramos

The filling process in water pipelines produces pressure surges caused by the compression of air pockets. In this sense, air valves should be appropriately designed to expel sufficient air to avoid pipeline failure. Recent studies concerning filling maneuvers have been addressed without considering the behavior of air valves. This work shows a mathematical model developed by the authors which is capable of simulating the main hydraulic and thermodynamic variables during filling operations under the effect of the air valve in a single pipeline, which is based on the mass oscillation equation, the air–water interface, the polytropic equation of the air phase, the air mass equation, and the air valve characterization. The mathematical model is validated in a 7.3-m-long pipeline with a 63-mm nominal diameter. A commercial air valve is positioned in the highest point of the hydraulic installation. Measurements indicate that the mathematical model can be used to simulate this phenomenon by providing good accuracy.


Sign in / Sign up

Export Citation Format

Share Document