scholarly journals Characterizing Pairwise Social Relationships Quantitatively: Interest-Oriented Mobility Modeling for Human Contacts in Delay Tolerant Networks

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Jiaxu Chen ◽  
Yazhe Tang ◽  
Chengchen Hu ◽  
Guijuan Wang

Human mobility modeling has increasingly drawn the attention of researchers working on wireless mobile networks such as delay tolerant networks (DTNs) in the last few years. So far, a number of human mobility models have been proposed to reproduce people’s social relationships, which strongly affect people’s daily life movement behaviors. However, most of them are based on the granularity of community. This paper presents interest-oriented human contacts (IHC) mobility model, which can reproduce social relationships on a pairwise granularity. As well, IHC provides two methods to generate input parameters (interest vectors) based on the social interaction matrix of target scenarios. By comparing synthetic data generated by IHC with three different real traces, we validate our model as a good approximation for human mobility. Exhaustive experiments are also conducted to show that IHC can predict well the performance of routing protocols.

2018 ◽  
Vol 14 (5) ◽  
pp. 155014771877622 ◽  
Author(s):  
Jiagao Wu ◽  
Yue Ma ◽  
Linfeng Liu

Delay-tolerant networks are novel wireless mobile networks, which are characterized with high latency and frequent disconnectivity. Besides, people carrying mobile devices form a lot of communities because of similar interests and social relationships. How to improve the routing efficiency in multi-community scenarios has become one of the research hot spots in delay-tolerant networks. In this article, we present a network model of the multi-community delay-tolerant networks and formulate a dynamic quota-controlled routing problem of minimizing the average number of copies of a message that satisfies the required delivery probability under the given time-to-live of the message as a nonlinear optimization problem. To solve this problem, we propose an improved genetic algorithm called genetic algorithm for delivery probability and time-to-live optimization for the dynamic quota-controlled routing scheme to reduce the routing cost further. In addition, a cost-efficient dynamic quota-controlled routing protocol based on genetic algorithm for delivery probability and time-to-live optimization is proposed, which can dynamically adjust message copies according to its assigned delivery probability and time-to-live in different communities on the shortest path. Both the numerical and simulation results show that our routing with the proposed algorithm is more cost efficient.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 221 ◽  
Author(s):  
Dat Van Anh Duong ◽  
Seokhoon Yoon

Since human movement patterns are important for validating the performance of wireless networks, several traces of human movements in real life have been collected. However, collecting data about human movements is costly and time-consuming. Moreover, multiple traces are demanded to test various network scenarios. As a result, a lot of synthetic models of human movement have been proposed. Nevertheless, most of the proposed models were often based on random generation, and cannot produce realistic human movements. Although there have been a few models that tried to capture the characteristics of human movement in real life (e.g., flights, inter-contact times, and pause times following the truncated power-law distribution), those models still cannot reflect realistic human movements due to a lack of consideration for social context among people. To address those limitations, in this paper, we propose a novel human mobility model called the social relationship–aware human mobility model (SRMM), which considers social context as well as the characteristics of human movement. SRMM partitions people into social groups by exploiting information from a social graph. Then, the movements of people are determined by considering the distances to places and social relationships. The proposed model is first evaluated by using a synthetic map, and then a real road map is considered. The results of SRMM are compared with a real trace and other synthetic mobility models. The obtained results indicate that SRMM is consistently better at reflecting both human movement characteristics and social relationships.


Author(s):  
Eranda Harshanath Jayatunga ◽  
Pasika Sashmal Ranaweera ◽  
Indika Anuradha Mendis Balapuwaduge

The internet of things (IoT) is paving a path for connecting a plethora of smart devices together that emerges from the novel 5G-based applications. This evident heterogeneity invites the integration of diverse technologies such as wireless sensor networks (WSNs), software-defined networks (SDNs), cognitive radio networks (CRNs), delay tolerant networks (DTNs), and opportunistic networks (oppnets). However, the security and privacy are prominent conundrums due to featured compatibility and interoperability aspects of evolving directives. Blockchain is the most nascent paradigm instituted to resolve the issues of security and privacy while retaining performance standards. In this chapter, advances of blockchain technology in aforesaid networks are investigated and presented as means to be followed as security practices for pragmatically realizing the concepts.


Sign in / Sign up

Export Citation Format

Share Document