scholarly journals Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Weishang Gao ◽  
Cheng Shao ◽  
Yi An

Evolutionary algorithms (EAs) were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA) with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Alireza Rowhanimanesh ◽  
Sohrab Efati

Evolutionary methods are well-known techniques for solving nonlinear constrained optimization problems. Due to the exploration power of evolution-based optimizers, population usually converges to a region around global optimum after several generations. Although this convergence can be efficiently used to reduce search space, in most of the existing optimization methods, search is still continued over original space and considerable time is wasted for searching ineffective regions. This paper proposes a simple and general approach based on search space reduction to improve the exploitation power of the existing evolutionary methods without adding any significant computational complexity. After a number of generations when enough exploration is performed, search space is reduced to a small subspace around the best individual, and then search is continued over this reduced space. If the space reduction parameters (red_gen and red_factor) are adjusted properly, reduced space will include global optimum. The proposed scheme can help the existing evolutionary methods to find better near-optimal solutions in a shorter time. To demonstrate the power of the new approach, it is applied to a set of benchmark constrained optimization problems and the results are compared with a previous work in the literature.


2012 ◽  
Vol 220-223 ◽  
pp. 2846-2851
Author(s):  
Si Lian Xie ◽  
Tie Bin Wu ◽  
Shui Ping Wu ◽  
Yun Lian Liu

Evolutionary algorithms are amongst the best known methods of solving difficult constrained optimization problems, for which traditional methods are not applicable. Due to the variability of characteristics in different constrained optimization problems, no single evolutionary with single operator performs consistently over a range of problems. We introduce an algorithm framework that uses multiple search operators in each generation. A composite evolutionary algorithm is proposed in this paper and combined feasibility rule to solve constrained optimization problems. The proposed evolutionary algorithm combines three crossover operators with two mutation operators. The selection criteria based on feasibility of individual is used to deal with the constraints. The proposed method is tested on five well-known benchmark constrained optimization problems, and the experimental results show that it is effective and robust


Author(s):  
YIBO HU

For constrained optimization problems, evolutionary algorithms often utilize a penalty function to deal with constraints, even if it is difficult to control the penalty parameters. To overcome this shortcoming, this paper presents a new penalty function which has no parameter and can effectively handle constraint first, after which a hybrid-fitness function integrating this penalty function into the objective function is designed. The new fitness function can properly evaluate not only feasible solution, but also infeasible one, and distinguish any feasible one from an infeasible one. Meanwhile, a new crossover operator based on simplex crossover operator and a new PSO mutation operator are also proposed, which can produce high quality offspring. Based on these, a new evolutionary algorithm for constrained optimization problems is proposed. The simulations are made on ten widely used benchmark problems, and the results indicate the proposed algorithm is effective.


2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Jinn-Tsong Tsai ◽  
Jyh-Horng Chou ◽  
Wen-Hsien Ho

An improved quantum-inspired evolutionary algorithm is proposed for solving mixed discrete-continuous nonlinear problems in engineering design. The proposed Latin square quantum-inspired evolutionary algorithm (LSQEA) combines Latin squares and quantum-inspired genetic algorithm (QGA). The novel contribution of the proposed LSQEA is the use of a QGA to explore the optimal feasible region in macrospace and the use of a systematic reasoning mechanism of the Latin square to exploit the better solution in microspace. By combining the advantages of exploration and exploitation, the LSQEA provides higher computational efficiency and robustness compared to QGA and real-coded GA when solving global numerical optimization problems with continuous variables. Additionally, the proposed LSQEA approach effectively solves mixed discrete-continuous nonlinear design optimization problems in which the design variables are integers, discrete values, and continuous values. The computational experiments show that the proposed LSQEA approach obtains better results compared to existing methods reported in the literature.


Optik ◽  
2014 ◽  
Vol 125 (2) ◽  
pp. 897-902 ◽  
Author(s):  
Jianhua Xiao ◽  
Yufang Huang ◽  
Zhen Cheng ◽  
Juanjuan He ◽  
Yunyun Niu

Sign in / Sign up

Export Citation Format

Share Document