nonlinear constrained optimization
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 15)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
Vol 69 (1) ◽  
Author(s):  
Abd-Elsalam R. Abd-Elhay ◽  
Wael A. Murtada ◽  
Mohamed I. Yosof

AbstractReaction wheels are crucial actuators in spacecraft attitude control subsystem (ACS). The precise modeling of reaction wheels is of fundamental need in spacecraft ACS for design, analysis, simulation, and fault diagnosis applications. The complex nature of the reaction wheel leads to modeling difficulties utilizing the conventional modeling schemes. Additionally, the absence of reaction wheel providers’ parameters is crucial for triggering a new modeling scheme. The Radial Basis Function Neural Network (RBFNN) has an efficient architecture, alluring generalization properties, invulnerability against noise, and amazing training capabilities. This research proposes a promising modeling scheme for the spacecraft reaction wheel utilizing RBFNN and an improved variant of the Quantum Behaved Particle Swarm Optimization (QPSO). The problem of enhancing the network parameters of the RBFNN at the training phase is formed as a nonlinear constrained optimization problem. Thus, it is proposed to efficiently resolve utilizing an enhanced version of QPSO with mutation strategy (EQPSO-2M). The proposed technique is compared with the conventional QPSO algorithm and different variants of PSO algorithms. Evaluation criteria rely upon convergence speed, mean best fitness value, stability, and the number of successful runs that has been utilized to assess the proposed approach. A non-parametric test is utilized to decide the critical contrast between the results of the proposed algorithm compared with different algorithms. The simulation results demonstrated that the training of the proposed RBFNN-based reaction wheel model with enhanced parameters by EQPSO-2M algorithm furnishes a superior prediction accuracy went with effective network architecture.


2021 ◽  
Vol 8 ◽  
pp. 105-117
Author(s):  
Rizzo Gianfranco ◽  
Tiano Francesco Antonio ◽  
Marino Matteo

There is a strongly increasing diffusion of Electric Vehicles (EV) and Plug-in Hybrid Electric Vehicles (PHEV), in order to reduce air pollution in urban environment and to mitigate the global warming issues. Anyway, the achievement of this latter goal strictly depends on the source of primary energy used to generate electrical energy. In the paper, a model for the optimal design and operation of a charging station for EV and PHEV assisted by a PhotoVoltaic (PV) plant is presented. A provisional model for the estimation of the incoming insolation, based on cloudiness prevision, is integrated with a nonlinear constrained optimization algorithm, in order to satisfy the load while minimizing the recourse to electrical grid for battery storage charging. Simulations on different locations and charging loads for various size of PV plant and battery capacity are presented, and the benefits in terms of CO2 reduction discussed.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1419
Author(s):  
Ibrahim M. Abu Reesh

Optimization of the continuous fermentation process is important for increasing efficiency and decreasing cost, especially for complicated biochemical processes described by substrate and product inhibition. The optimum design (minimum volume) of CSTRs in series assuming substrate and product inhibition was determined in this study. The effect of operating parameters on the optimum design was investigated. The optimum substrate concentration in the feed to the first reactor was determined for N reactors in series. The nonlinear, constrained optimization problem was solved using the MATLAB function “fmincon”. It was found that the optimum design is more beneficial at high substrate conversion and at a medium level of feed substrate concentration. The best number of reactors is two to three for optimum arrangements and two for equal-size arrangements. The presence of biomass in the feed to the first reactor reduces the reactor volume, while the presence of product in the feed slightly increases the required total volume. The percentage reduction in the total volume using the optimum design compared to equal-volume design (R%) was determined as a function of substrate conversion and substrate concentration in the feed to the first reactor. The obtained R% values agree with experimental data available in the literature for ethanol fermentation.


2021 ◽  
Vol 7 (3) ◽  
pp. 289-318
Author(s):  
Xiao-Ming Fu ◽  
Jian-Ping Su ◽  
Zheng-Yu Zhao ◽  
Qing Fang ◽  
Chunyang Ye ◽  
...  

AbstractA geometric mapping establishes a correspondence between two domains. Since no real object has zero or negative volume, such a mapping is required to be inversion-free. Computing inversion-free mappings is a fundamental task in numerous computer graphics and geometric processing applications, such as deformation, texture mapping, mesh generation, and others. This task is usually formulated as a non-convex, nonlinear, constrained optimization problem. Various methods have been developed to solve this optimization problem. As well as being inversion-free, different applications have various further requirements. We expand the discussion in two directions to (i) problems imposing specific constraints and (ii) combinatorial problems. This report provides a systematic overview of inversion-free mapping construction, a detailed discussion of the construction methods, including their strengths and weaknesses, and a description of open problems in this research field.


2021 ◽  
Vol 49 (2) ◽  
pp. 501-510
Author(s):  
Rosen Mitrev ◽  
Todor Todorov

The paper reports the optimization synthesis of a hydraulically actuated drive mechanism. A mathematical model of the mechanism using vector closure equations is developed. Based on the functional purpose of the mechanism, a set of geometric and force/moment requirements are defined which must be met by a proper selection of a standardized hydraulic cylinder and its points of attachment. A multiobjective design optimization task is defined with three objective functions whose minimum is searched - the mass of the hydraulic cylinder, the squared total deviation of the developed by the hydraulic cylinder moments from the predefined values of the external moments and the force in the hydraulic cylinder. The defined multiobjective optimization task is considered as a mixed variable nonlinear constrained optimization problem containing 5 continuous and 2 discrete variables and the multistage Monte Carlo method is used for its solution. Using different weighting schemes several Pareto-optimal compromise solutions are obtained.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5141
Author(s):  
Andrzej J. Osiadacz ◽  
Niccolo Isoli

The main goal of this paper is to prove that bi-objective optimization of high-pressure gas networks ensures grater system efficiency than scalar optimization. The proposed algorithm searches for a trade-off between minimization of the running costs of compressors and maximization of gas networks capacity (security of gas supply to customers). The bi-criteria algorithm was developed using a gradient projection method to solve the nonlinear constrained optimization problem, and a hierarchical vector optimization method. To prove the correctness of the algorithm, three existing networks have been solved. A comparison between the scalar optimization and bi-criteria optimization results confirmed the advantages of the bi-criteria optimization approach.


2020 ◽  
Vol 62 (8) ◽  
pp. 1107-1120
Author(s):  
Pedro Miraldo ◽  
João R. Cardoso

Abstract This paper addresses the problem of finding the closest generalized essential matrix from a given $$6\times 6$$ 6 × 6 matrix, with respect to the Frobenius norm. To the best of our knowledge, this nonlinear constrained optimization problem has not been addressed in the literature yet. Although it can be solved directly, it involves a large number of constraints, and any optimization method to solve it would require much computational effort. We start by deriving a couple of unconstrained formulations of the problem. After that, we convert the original problem into a new one, involving only orthogonal constraints, and propose an efficient algorithm of steepest descent type to find its solution. To test the algorithms, we evaluate the methods with synthetic data and conclude that the proposed steepest descent-type approach is much faster than the direct application of general optimization techniques to the original formulation with 33 constraints and to the unconstrained ones. To further motivate the relevance of our method, we apply it in two pose problems (relative and absolute) using synthetic and real data.


Sign in / Sign up

Export Citation Format

Share Document