local extrema
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 43)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
pp. 25-43
Author(s):  
L. Koteswara Rao ◽  
Md. Zia Ur Rahman ◽  
P. Rohini
Keyword(s):  

2022 ◽  
Vol 70 (2) ◽  
pp. 3939-3954
Author(s):  
Ghanshyam Raghuwanshi ◽  
Yogesh Gupta ◽  
Deepak Sinwar ◽  
Dilbag Singh ◽  
Usman Tariq ◽  
...  

2021 ◽  
Vol 27 (1) ◽  
pp. 03-21
Author(s):  
Сергей Иванович Горб ◽  
◽  
Екатерина Яцык

Annotation – The well-established method of tuning the speed governors (SG) of diesel engines during their operation under conditions of step disturbances, which are characteristic of diesel-generators, cannot be used for the main marine engines, the dynamic modes of which are associated, first of all, with heavy seas, because disturbances cannot change stepwise both along the channel for setting the rotational speed and along the load channel. In this regard, the practical need for the development of a method for tuning the SG of the main engines, which takes into account the peculiarities of their operation in heavy seas, has been determined. The study simulates the automatic speed control system (ASC) of the main marine engine HYUNDAI – MAN B&W 6G70ME-C9.2 of the large crude carrier "GOLDWAY" with the AutoChief 600 electronic SG. The minimum of instability of the controlled parameter was used as an optimality criterion, i.e. the amplitude of the oscillations of the rotational speed of the diesel engine shaft, with the most probable values of the amplitude and period of oscillations (rolling) of the disturbing effect. The study has established that changing the tuning parameters of the governor may lead to local extrema of the optimality criterion when using an electronic governor in the ACS in the factor space of disturbances on a diesel engine, which are typical for heavy seas. It means that the task, requiring finding local extrema using specialized methods, can be set when using an electronic governor in the ACS. However, a significant decrease in the instability of the rotational speed was achieved by carrying out a simple enumeration of the tuning parameters of the SG. It was also found that with a "heavy" propeller, the rotational speed stability can be increased by decreasing the proportional gain, as well as increasing the integrator time.


2021 ◽  
pp. 100196
Author(s):  
Sarah E. Davidson ◽  
Matthew W. Wheeler ◽  
Scott S. Auerbach ◽  
Siva Sivaganesan ◽  
Mario Medvedovic

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1272
Author(s):  
Konstantin Barkalov ◽  
Ilya Lebedev ◽  
Evgeny Kozinov

This paper features the study of global optimization problems and numerical methods of their solution. Such problems are computationally expensive since the objective function can be multi-extremal, nondifferentiable, and, as a rule, given in the form of a “black box”. This study used a deterministic algorithm for finding the global extremum. This algorithm is based neither on the concept of multistart, nor nature-inspired algorithms. The article provides computational rules of the one-dimensional algorithm and the nested optimization scheme which could be applied for solving multidimensional problems. Please note that the solution complexity of global optimization problems essentially depends on the presence of multiple local extrema. In this paper, we apply machine learning methods to identify regions of attraction of local minima. The use of local optimization algorithms in the selected regions can significantly accelerate the convergence of global search as it could reduce the number of search trials in the vicinity of local minima. The results of computational experiments carried out on several hundred global optimization problems of different dimensionalities presented in the paper confirm the effect of accelerated convergence (in terms of the number of search trials required to solve a problem with a given accuracy).


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 61-69
Author(s):  
A. T. Nguyen ◽  
V. Yu. Tsviatkou

In this paper, the problem of segmentation of halftone images is considered, in which areas of local maxima and minima (extrema) are distinguished with a monotonic change in the brightness of pixels from local extrema to the boundaries of areas. To solve this problem, a mathematical model is proposed and a segmentation algorithm is developed on the basis of counter-wave growing of local extremum regions. The developed algorithm differs from the known segmentation algorithms by using a set of brightness thresholds (by the number of regions), varying by one in each cycle, starting from the values of local extrema, taking into account the increase or decrease in brightness to select adjacent pixels that are attached to the regions formed from these local extrema. The algorithm provides a greater deviation of pixel brightness from the average value within the region compared to known segmentation algorithms. This does not allow evaluating its efficiency using known indicators based on the variance of the brightness within the region. In this regard, estimates of the monotonicity of changes in the brightness of regions are proposed based on a) the shortest distances from each pixel of the region to the corresponding local extremum along the routes determined by the maximum increase (for the region of the local maximum) or decrease (for the region of the local minimum) the brightness of pixels and b) taking into account the number pixels that break the monotony of the segment brightness change. Using these estimates, it is shown that the proposed algorithm provides segmentation of artificial and natural grayscale images with a monotonic change in the brightness of pixels in the areas of local extrema. These properties allow us to consider the developed algorithm as a basis for the selection of texels, spots, low-contrast objects in images.


2021 ◽  
pp. 111-119
Author(s):  
D. Levkin ◽  

The article investigates some issues of complex systems analysis and synthesis that contain local, discrete sources of temperature fields. The emphasis of the author's research lies in the calculation and optimization of the parameters of the laser action on the embryo. The biotechnological process is described by the boundary value problem of a non-stationary, multidimensional differential equation of thermal conductivity which satisfies the boundary conditions of heat flux, beginning and end of the laser action process. The author proposes an algorithm for calculation and optimization of the control parameters of laser action on multilayer microbiological material. The object of the study is the embryo under the action of a laser beam for fission. As a first approximation, at the stage of calculation and optimization of the parameters of the biotechnological process, the embryo is considered as a homogeneous body. The values of thermophysical characteristics are calculated by the method of expert evaluation of the parameters of the emitters. The correctness of the boundary value problem of the process of laser action on the embryo is proved by the author using the method of pseudodifferential operators. Seeking the solution of the boundary value problem in the form of the series, the analytical function of the temperature field distribution is obtained using the Fourier method of the separated variables in the article. Using the method of indeterminate coefficients, the author found the temperature of the laser action on the embryo. Using the approximate gradient method of finding local extrema and the method of directed search of local extrema, it is possible to obtain rational values of optimized parameters of the biotechnological process. The author outlines possible approaches for optimization of technical parameters of laser emitters. In his opinion, the results of research can be considered fundamental for the calculation and optimization of the parameters of the laser action on the embryo, taking into account the multilayer structure of the latter.


Sign in / Sign up

Export Citation Format

Share Document