scholarly journals Global Behavior ofxn+1=(α+βxn-k)/(γ+xn)

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Chenquan Gan ◽  
Xiaofan Yang ◽  
Wanping Liu

This paper aims to investigate the global stability of negative solutions of the difference equationxn+1=(α+βxn-k)/(γ+xn),n=0,1,2,…, where the initial conditionsx-k,…,x0∈-∞,0,kis a positive integer, and the parametersβ,  γ<0,  α>0. By utilizing the invariant interval and periodic character of solutions, it is found that the unique negative equilibrium is globally asymptotically stable under some parameter conditions. Additionally, two examples are given to illustrate the main results in the end.

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Meirong Xu ◽  
Yuzhen Wang

The difference equationyn+1−yn=−αyn+∑j=1mβje−γjyn−kjis studied and some sufficient conditions which guarantee that all solutions of the equation are oscillatory, or that the positive equilibrium of the equation is globally asymptotically stable, are obtained.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Awad A. Bakery

We give in this work the sufficient conditions on the positive solutions of the difference equationxn+1=α+(xn-1m/xnk),  n=0,1,…, whereα,k, andm∈(0,∞)under positive initial conditionsx-1,  x0to be bounded,α-convergent, the equilibrium point to be globally asymptotically stable and that every positive solution converges to a prime two-periodic solution. Our results coincide with that known for the casesm=k=1of Amleh et al. (1999) andm=1of Hamza and Morsy (2009). We offer improving conditions in the case ofm=1of Gümüs and Öcalan (2012) and explain our results by some numerical examples with figures.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
E. M. E. Zayed ◽  
M. A. El-Moneam

The main objective of this paper is to study the boundedness character, the periodic character, the convergence, and the global stability of the positive solutions of the difference equationxn+1=(A+∑i=0kαixn−i)/(B+∑i=0kβixn−i), n=0,1,2,…,whereA, B, αi, βiand the initial conditionsx−k,...,x−1,x0are arbitrary positive real numbers, whilekis a positive integer number.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Hongjian Xi ◽  
Taixiang Sun ◽  
Bin Qin ◽  
Hui Wu

We consider the following difference equationxn+1=xn-1g(xn),n=0,1,…,where initial valuesx-1,x0∈[0,+∞)andg:[0,+∞)→(0,1]is a strictly decreasing continuous surjective function. We show the following. (1) Every positive solution of this equation converges toa,0,a,0,…,or0,a,0,a,…for somea∈[0,+∞). (2) Assumea∈(0,+∞). Then the set of initial conditions(x-1,x0)∈(0,+∞)×(0,+∞)such that the positive solutions of this equation converge toa,0,a,0,…,or0,a,0,a,…is a unique strictly increasing continuous function or an empty set.


2017 ◽  
Vol 14 (1) ◽  
pp. 306-313
Author(s):  
Awad. A Bakery ◽  
Afaf. R. Abou Elmatty

We give here the sufficient conditions on the positive solutions of the difference equation xn+1 = α+M((xn−1)/xn), n = 0, 1, …, where M is an Orlicz function, α∈ (0, ∞) with arbitrary positive initials x−1, x0 to be bounded, α-convergent and the equilibrium point to be globally asymptotically stable. Finally we present the condition for which every positive solution converges to a prime two periodic solution. Our results coincide with that known for the cases M(x) = x in Ref. [3] and M(x) = xk, where k ∈ (0, ∞) in Ref. [7]. We have given the solution of open problem proposed in Ref. [7] about the existence of the positive solution which eventually alternates above and below equilibrium and converges to the equilibrium point. Some numerical examples with figures will be given to show our results.


2010 ◽  
Vol 2010 ◽  
pp. 1-6
Author(s):  
Taixiang Sun ◽  
Hongjian Xi ◽  
Hui Wu ◽  
Caihong Han

We study the following difference equationxn+1=(p+xn-1)/(qxn+xn-1),n=0,1,…,wherep,q∈(0,+∞)and the initial conditionsx-1,x0∈(0,+∞). We show that every positive solution of the above equation either converges to a finite limit or to a two cycle, which confirms that the Conjecture 6.10.4 proposed by Kulenović and Ladas (2002) is true.


2009 ◽  
Vol 2009 ◽  
pp. 1-7
Author(s):  
Meseret Tuba Gülpinar ◽  
Mustafa Bayram

Our aim is to investigate the global behavior of the following fourth-order rational difference equation: , where and the initial values . To verify that the positive equilibrium point of the equation is globally asymptotically stable, we used the rule of the successive lengths of positive and negative semicycles of nontrivial solutions of the aforementioned equation.


2020 ◽  
Vol 27 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Raafat Abo-Zeid

AbstractIn this paper, we determine the forbidden set, introduce an explicit formula for the solutions and discuss the global behavior of solutions of the difference equationx_{n+1}=\frac{ax_{n}x_{n-k}}{bx_{n}-cx_{n-k-1}},\quad n=0,1,\ldots,where{a,b,c}are positive real numbers and the initial conditions{x_{-k-1},x_{-k},\ldots,x_{-1},x_{0}}are real numbers. We show that when{a=b=c}, the behavior of the solutions depends on whetherkis even or odd.


2011 ◽  
Vol 31 (1) ◽  
pp. 43 ◽  
Author(s):  
R. Abo-Zeid ◽  
Cengiz Cinar

The aim of this work is to investigate the global stability, periodic nature, oscillation and the boundedness of all admissible solutions of the difference equation $x_{n+1}=\frac{Ax_{n-1}} {B-Cx_{n}x_{n-2}}$, n=0,1,2,... where A, B, C are positive real numbers.


2011 ◽  
Vol 61 (6) ◽  
Author(s):  
İlhan Öztürk ◽  
Saime Zengin

AbstractIn this paper, we investigate the global stability and the periodic nature of solutions of the difference equation $y_{n + 1} = \frac{{\alpha + y_n^p }} {{\beta y_{n - 1}^p }} - \frac{{\gamma + y_{n - 1}^p }} {{\beta y_n^p }},n = 0,1,2,... $ where α, β, γ ∈ (0,∞), α(1 − p) − γ > 0, 0 < p < 1, every y n ≠ 0 for n = −1, 0, 1, 2, … and the initial conditions y−1, y0 are arbitrary positive real numbers. We show that the equilibrium point of the difference equation is a global attractor with a basin that depends on the conditions of the coefficients.


Sign in / Sign up

Export Citation Format

Share Document