scholarly journals Effect of Diffusion and Cross-Diffusion in a Predator-Prey Model with a Transmissible Disease in the Predator Species

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Guohong Zhang ◽  
Xiaoli Wang

We study a Lotka-Volterra type predator-prey model with a transmissible disease in the predator population. We concentrate on the effect of diffusion and cross-diffusion on the emergence of stationary patterns. We first show that both self-diffusion and cross-diffusion can not cause Turing instability from the disease-free equilibria. Then we find that the endemic equilibrium remains linearly stable for the reaction diffusion system without cross-diffusion, while it becomes linearly unstable when cross-diffusion also plays a role in the reaction-diffusion system; hence, the instability is driven solely from the effect of cross-diffusion. Furthermore, we derive some results for the existence and nonexistence of nonconstant stationary solutions when the diffusion rate of a certain species is small or large.

Filomat ◽  
2018 ◽  
Vol 32 (13) ◽  
pp. 4665-4672
Author(s):  
Demou Luo ◽  
Hailin Liu

In this article, we investigate the global asymptotic stability of a reaction-diffusion system of predator-prey model. By applying the comparison principle and iteration method, we prove the global asymptotic stability of the unique positive equilibrium solution of (1.1).


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Shengmao Fu ◽  
Lina Zhang

In this paper, we consider a cross-diffusion predator-prey model with sex structure. We prove that cross-diffusion can destabilize a uniform positive equilibrium which is stable for the ODE system and for the weakly coupled reaction-diffusion system. As a result, we find that stationary patterns arise solely from the effect of cross-diffusion.


2018 ◽  
Vol 28 (11) ◽  
pp. 2131-2159 ◽  
Author(s):  
Willian Cintra ◽  
Cristian Morales-Rodrigo ◽  
Antonio Suárez

In this paper, we study the existence and non-existence of coexistence states for a cross-diffusion system arising from a prey–predator model with a predator satiation term. We use mainly bifurcation methods and a priori bounds to obtain our results. This leads us to study the coexistence region and compare our results with the classical linear diffusion predator–prey model. Our results suggest that when there is no abundance of prey, the predator needs to be a good hunter to survive.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850089 ◽  
Author(s):  
Walid Abid ◽  
R. Yafia ◽  
M. A. Aziz-Alaoui ◽  
Ahmed Aghriche

This paper is concerned with some mathematical analysis and numerical aspects of a reaction–diffusion system with cross-diffusion. This system models a modified version of Leslie–Gower functional response as well as that of the Holling-type II. Our aim is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The conditions of boundedness, existence of a positively invariant set are proved. Criteria for local stability/instability and global stability are obtained. By using the bifurcation theory, the conditions of Hopf and Turing bifurcation critical lines in a spatial domain are proved. Finally, we carry out some numerical simulations in order to support our theoretical results and to interpret how biological processes affect spatiotemporal pattern formation which show that it is useful to use the predator–prey model to detect the spatial dynamics in the real life.


2014 ◽  
Vol 24 (06) ◽  
pp. 1450081 ◽  
Author(s):  
Guangping Hu ◽  
Xiaoling Li ◽  
Shiping Lu ◽  
Yuepeng Wang

In this paper, we consider a species predator–prey model given a reaction–diffusion system. It incorporates the Holling type II functional response and a quadratic intra-predator interaction term. We focus on the qualitative analysis, bifurcation mechanisms and pattern formation. We present the results of numerical experiments in two space dimensions and illustrate the impact of the diffusion on the Turing pattern formation. For this diffusion system, we also observe non-Turing structures such as spiral wave, target pattern and spatiotemporal chaos resulting from the time evolution of these structures.


Sign in / Sign up

Export Citation Format

Share Document