scholarly journals New Scheme of Finite Difference Heterogeneous Multiscale Method to Solve Saturated Flow in Porous Media

2014 ◽  
Vol 2014 ◽  
pp. 1-19
Author(s):  
Fulai Chen ◽  
Li Ren

A new finite difference scheme, the development of the finite difference heterogeneous multiscale method (FDHMM), is constructed for simulating saturated water flow in random porous media. In the discretization framework of FDHMM, we follow some ideas from the multiscale finite element method and construct basic microscopic elliptic models. Tests on a variety of numerical experiments show that, in the case that only about a half of the information of the whole microstructure is used, the constructed scheme gives better accuracy at a much lower computational time than FDHMM for the problem of aquifer response to sudden change in reservoir level and gives comparable accuracy at a much lower computational time than FDHMM for the weak drawdown problem.

2013 ◽  
Author(s):  
Mayur Pal ◽  
Sadok Lamine ◽  
Knut-Andreas Lie ◽  
Stein Krogstad

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 588-601 ◽  
Author(s):  
Yi Wang ◽  
Bo Yu ◽  
Shuyu Sun

AbstractFast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 × 10−4% ~ 2.3 × 10−1%) and large acceleration (speed-up 880 ~ 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.


Sign in / Sign up

Export Citation Format

Share Document