multiscale finite element
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 116)

H-INDEX

35
(FIVE YEARS 6)

Author(s):  
Valentin Hanser ◽  
Markus Schöbinger ◽  
Karl Hollaus

Purpose This work introduces an efficient and accurate technique to solve the eddy current problem in laminated iron cores considering vector hysteresis. Design/methodology/approach The mixed multiscale finite element method based on the based on the T,Φ-Φ formulation, with the current vector potential T and the magnetic scalar potential Φ allows the laminated core to be modelled as a single homogeneous block. This means that the individual sheets do not have to be resolved, which saves a lot of computing time and reduces the demands on the computer system enormously. Findings As a representative numerical example, a single-phase transformer with 4, 20 and 184 sheets is simulated with great success. The eddy current losses of the simulation using the standard finite element method and the simulation using the mixed multiscale finite element method agree very well and the required simulation time is tremendously reduced. Originality/value The vector Preisach model is used to account for vector hysteresis and is integrated into the mixed multiscale finite element method for the first time.


Author(s):  
Liming Shu ◽  
Ko Yamamoto ◽  
Reina Yoshizaki ◽  
Jiang Yao ◽  
Takashi Sato ◽  
...  

Author(s):  
Mischa Blaszczyk ◽  
Klaus Hackl

AbstractModeling of cancellous bone has important applications in the detection and treatment of fatigue fractures and diseases like osteoporosis. In this paper, we present a fully coupled multiscale approach considering mechanical, electric and magnetic effects by using the multiscale finite element method and a two-phase material model on the microscale. We show numerical results for both scales, including calculations for a femur bone, comparing a healthy bone to ones affected by different stages of osteoporosis. Here, the magnetic field strength resulting from a small mechanical impact decreases drastically for later stages of the disease, confirming experimental research.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2545
Author(s):  
Sergei Stepanov ◽  
Djulustan Nikiforov ◽  
Aleksandr Grigorev

In this work, we design a multiscale simulation method based on the Generalized Multiscale Finite Element Method (GMsFEM) for numerical modeling of fluid seepage under permafrost condition in heterogeneous soils. The complex multiphysical model consists of the coupled Richards equation and the Stefan problem. These problems often contain heterogeneities due to variations of soil properties. For this reason, we design coarse-grid spaces for the multiphysical problem and design special algorithms for solving the overall problem. A numerical method has been tested on two- and three-dimensional model problems. A a quasi-real geometry with a complex surface is considered for the three-dimensional case. We demonstrate the efficiency and accuracy of the proposed method using several representative numerical results.


Sign in / Sign up

Export Citation Format

Share Document