scholarly journals Subharmonic Resonance of Van Der Pol Oscillator with Fractional-Order Derivative

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Yongjun Shen ◽  
Peng Wei ◽  
Chuanyi Sui ◽  
Shaopu Yang

The subharmonic resonance of van der Pol (VDP) oscillator with fractional-order derivative is studied by the averaging method. At first, the first-order approximate solutions are obtained by the averaging method. Then the definitions of equivalent linear damping coefficient (ELDC) and equivalent linear stiffness coefficient (ELSC) for subharmonic resonance are established, and the effects of the fractional-order parameters on the ELDC, the ELSC, and the dynamical characteristics of system are also analysed. Moreover, the amplitude-frequency equation and phase-frequency equation of steady-state solution for subharmonic resonance are established. The corresponding stability condition is presented based on Lyapunov theory, and the existence condition for subharmonic resonance (ECSR) is also obtained. At last, the comparisons of the fractional-order and the traditional integer-order VDP oscillator are fulfilled by the numerical simulation. The effects of the parameters in fractional-order derivative on the steady-state amplitude, the amplitude-frequency curves, and the system stability are also studied.

Author(s):  
Nguyen Van Khang ◽  
Bui Thi Thuy ◽  
Truong Quoc Chien

This study aims to investigate the harmonic resonance of third-order forced van der Pol oscillator with fractional-order derivative using the asymptotic method. The approximately analytical solution for the system is first determined, and the amplitude–frequency equation of the oscillator is established. The stability condition of the harmonic solution is then obtained by means of Lyapunov theory. A comparison between the traditional integer-order of forced van der Pol oscillator and the considered fractional-order one follows the numerical simulation. Finally, the numerical results are analyzed to show the influences of the parameters in the fractional-order derivative on the steady-state amplitude, the amplitude–frequency curves, and the system stability.


Author(s):  
Nguyen Van Khang ◽  
Truong Quoc Chien

In this paper, the subharmonic resonance of Duffing oscillator with fractional-order derivative is investigated using the averaging method. First, the approximately analytical solution and the amplitude–frequency equation are obtained. The existence condition for subharmonic resonance based on the approximately analytical solution is then presented, and the corresponding stability condition based on Lyapunov theory is also obtained. Finally, a comparison between the fractional-order and the traditional integer-order of Duffing oscillators is made using numerical simulation. The influences of the parameters in fractional-order derivative on the steady-state amplitude, the amplitude–frequency curves, and the system stability are also investigated.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 809-818 ◽  
Author(s):  
Jun-Sheng Duan ◽  
Cui-Ping Cheng ◽  
Lian Chen

AbstractWe conduct a detailed study and comparison for the one-degree-of-freedom steady-state vibrations under harmonic driving with a single fractional-order derivative and a distributed-order derivative. For each of the two vibration systems, we consider the stiffness contribution factor and damping contribution factor of the term of fractional derivatives, the amplitude and the phase difference for the response. The effects of driving frequency on these response quantities are discussed. Also the influences of the orderαof the fractional derivative and the parameterγparameterizing the weight function in the distributed-order derivative are analyzed. Two cases display similar response behaviors, but the stiffness contribution factor and damping contribution factor of the distributed-order derivative are almost monotonic change with the parameterγ, not exactly like the case of single fractional-order derivative for the orderα. The case of the distributed-order derivative provides us more options for the weight function and parameters.


2020 ◽  
Vol 9 (11) ◽  
pp. 9769-9780
Author(s):  
S.G. Khavale ◽  
K.R. Gaikwad

This paper is dealing the modified Ohm's law with the temperature gradient of generalized theory of magneto-thermo-viscoelastic for a thermally, isotropic and electrically infinite material with a spherical region using fractional order derivative. The general solution obtained from Laplace transform, numerical Laplace inversion and state space approach. The temperature, displacement and stresses are obtained and represented graphically with the help of Mathcad software.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Choonkil Park ◽  
R. I. Nuruddeen ◽  
Khalid K. Ali ◽  
Lawal Muhammad ◽  
M. S. Osman ◽  
...  

Abstract This paper aims to investigate the class of fifth-order Korteweg–de Vries equations by devising suitable novel hyperbolic and exponential ansatze. The class under consideration is endowed with a time-fractional order derivative defined in the conformable fractional derivative sense. We realize various solitons and solutions of these equations. The fractional behavior of the solutions is studied comprehensively by using 2D and 3D graphs. The results demonstrate that the methods mentioned here are more effective in solving problems in mathematical physics and other branches of science.


2021 ◽  
pp. 104080
Author(s):  
Israr Ahmad ◽  
Thabet Abdeljawad ◽  
Ibrahim Mahariq ◽  
Kamal Shah ◽  
Nabil Mlaiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document