driving frequency
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 111)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Huajie Qu ◽  
Chendong Liu ◽  
Lei Zhang ◽  
Jianjun Qu ◽  
Baoyu Song

As a new type of driver, linear ultrasonic motor (LUSM) is widely used in the high-tech field because of its low speed, high thrust, low noise, and no electromagnetic interference. However, as an actuator used in microdevices, most of the existing LUSMs are large in size and not compact in structure. In order to overcome these limitations, a new structure of linear ultrasonic motor’s stator is developed in this paper. The stator is similar to a tuning fork structure, which is divided into three parts: two driving feet, two driving legs, and the driving body. By using the first-order longitudinal vibration mode of the whole stator and the unique partial second-order bending vibration mode of the driving legs to achieve vibration mode degeneracy, a mode hybrid linear ultrasonic motor that is easy to miniaturize is proposed. Its working principle is analyzed. The dynamic analysis of the stator is carried out by using finite element software. The structure dimension of the stator and the driving frequency under the working mode are determined. At the same time, the feasibility of driving feet synthesizing elliptical motion is verified theoretically and experimentally. In addition, the LUSM test setup is built. The effects of driving frequency and Vpp on stator stall force and average velocity are studied. The results show that the maximum stall force can reach 99 mN, and the average velocity of the motor is 88.67 mm/s with Vpp = 320 V and driving frequency 80.2 kHz. The proposed LUSM is appropriate for use in occasions with quick return characteristics, like the controlling valve or nozzle of the printer. The research results provide guidance for the stator design of the linear ultrasonic motor.


2022 ◽  
Vol 43 (1) ◽  
pp. 014102
Author(s):  
Zhaomeng Gao ◽  
Shuxian Lyu ◽  
Hangbing Lyu

Abstract Ferroelectric hysteresis loop measurement under high driving frequency generally faces great challenges. Parasitic factors in testing circuits such as leakage current and RC delay could result in abnormal hysteresis loops with erroneous remnant polarization (P r) and coercive field (E c). In this study, positive-up-negative-down (PUND) measurement under a wide frequency range was performed on a 10-nm thick Hf0.5Zr0.5O2 ferroelectric film. Detailed analysis on the leakage current and RC delay was conducted as the polarization switching occurs in the FE capacitor. After considering the time lag caused by RC delay, reasonable calibration of current response over the voltage pulse stimulus was employed in the integral of polarization current over time. In such a method, rational P–V loops measured at high frequencies (>1 MHz) was successfully achieved. This work provides a comprehensive understanding on the effect of parasitic factors on the polarization switching behavior of FE films.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 16
Author(s):  
Jr-Lung Lin

In this study, a valveless pump was successfully designed and fabricated for the purpose of medium transportation. Different from traditional pumps, the newly designed pump utilizes an actuated or a deflected membrane, and it serves as the function of a check valve at the same time. For achieving the valveless property, an inlet or outlet port positioned in an upper- or lower-layer thin membrane was designed to be connected to an entrance or exit channel. Theoretical analysis and numerical simulation were conducted simultaneously to investigate the large deformation characteristics of the membranes and to determine the proper location of the inlet or outlet port on the proposed pump. Then, the valveless pump was fabricated on the basis of the proposed design. In the experiment, the maximum flow rate of the proposed pump exceeded 12.47 mL/min at a driving frequency of 5.0 Hz and driving pressure of 68.95 kPa.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 335
Author(s):  
Víctor Ruiz-Díez ◽  
José Luis García-Caraballo ◽  
Jorge Hernando-García ◽  
José Luis Sánchez-Rojas

The miniaturization of robots with locomotion abilities is a challenge of significant technological impact in many applications where large-scale robots have physical or cost restrictions. Access to hostile environments, improving microfabrication processes, or advanced instrumentation are examples of their potential use. Here, we propose a miniature 20 mm long sub-gram robot with piezoelectric actuation whose direction of motion can be controlled. A differential drive approach was implemented in an H-shaped 3D-printed motor platform featuring two plate resonators linked at their center, with built-in legs. The locomotion was driven by the generation of standing waves on each plate by means of piezoelectric patches excited with burst signals. The control of the motion trajectory of the robot, either translation or rotation, was attained by adjusting the parameters of the actuation signals such as the applied voltage, the number of applied cycles, or the driving frequency. The robot demonstrated locomotion in bidirectional straight paths as long as 65 mm at 2 mm/s speed with a voltage amplitude of only 10 V, and forward and backward precise steps as low as 1 µm. The spinning of the robot could be controlled with turns as low as 0.013 deg. and angular speeds as high as 3 deg./s under the same conditions. The proposed device was able to describe complex trajectories of more than 160 mm, while carrying 70 times its own weight.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4439
Author(s):  
Rudolf Kiefer ◽  
Fred Elhi ◽  
Anna-Liisa Peikolainen ◽  
Tarmo Tamm

The trend across the whole of society is to focus on natural and/or biodegradable materials such as cellulose (Cell) over synthetic polymers. Among other usage scenarios, Cell can be combined with electroactive components such as multiwall carbon nanotubes (CNT) to form composites, such as Cell-CNT fibers, for applications in actuators, sensors, and energy storage devices. In this work, we aim to show that by changing the potential window, qualitative multifunctionality of the composites can be invoked, in both electromechanical response as well as energy storage capability. Cell-CNT fibers were investigated in different potential ranges (0.8 V to −0.3 V, 0.55 V to −0.8 V, 1 V to −0.8 V, and 1.5 V to −0.8 V), revealing the transfer from cation-active to anion-active as the potential window shifted towards more positive potentials. Moreover, increasing the driving frequency also shifts the mode from cation- to anion-active. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy were conducted to determine the ion species participating in charge compensation under different conditions.


Author(s):  
Atsushi Nakamura ◽  
Michio Maruta ◽  
Hyuma Makizako ◽  
Masaaki Miyata ◽  
Hironori Miyata ◽  
...  

The purpose of this cross-sectional study was to analyse the differences in meaningful activities and psychosomatic function depending on the driving status of community-dwelling older adults. Data from 594 older adults were obtained, including activities meaningful to individuals and psychosomatic functions, such as grip strength, depression, cognitive function, and ability of activity. Participants were divided into active driving (n = 549) and after driving cessation (n = 45) groups. In addition, the active driving group was operationally divided into three groups: high-frequency group (n = 387), medium group (n = 119), and infrequent group (n = 42). In the after driving cessation group, grip strength, and Japan Science and Technology Agency Index of Competence scores were significantly lower. Furthermore, the proportion of apathy and physical and social frailty was significantly higher in the after driving cessation group. Regarding meaningful activity, domestic life scores in the after driving cessation group were significantly higher than those of the active driving group. Decreased driving frequency in the active driving group was associated with weak muscle strength, lack of interest, and low activity. This study demonstrated that meaningful activity differed based on the driving status. Hence, we should support the activities of older adults who are considering driving cessation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Timothy P. L. Roberts ◽  
Luke Bloy ◽  
Song Liu ◽  
Matthew Ku ◽  
Lisa Blaskey ◽  
...  

Prevailing theories of the neural basis of at least a subset of individuals with autism spectrum disorder (ASD) include an imbalance of excitatory and inhibitory neurotransmission. These circuitry imbalances are commonly probed in adults using auditory steady-state responses (ASSR, driven at 40 Hz) to elicit coherent electrophysiological responses (EEG/MEG) from intact circuitry. Challenges to the ASSR methodology occur during development, where the optimal ASSR driving frequency may be unknown. An alternative approach (more agnostic to driving frequency) is the amplitude-modulated (AM) sweep in which the amplitude of a tone (with carrier frequency 500 Hz) is modulated as a sweep from 10 to 100 Hz over the course of ∼15 s. Phase synchrony of evoked responses, measured via intra-trial coherence, is recorded (by EEG or MEG) as a function of frequency. We applied such AM sweep stimuli bilaterally to 40 typically developing and 80 children with ASD, aged 6–18 years. Diagnoses were confirmed by DSM-5 criteria as well as autism diagnostic observation schedule (ADOS) observational assessment. Stimuli were presented binaurally during MEG recording and consisted of 20 AM swept stimuli (500 Hz carrier; sweep 10–100 Hz up and down) with a duration of ∼30 s each. Peak intra-trial coherence values and peak response frequencies of source modeled responses (auditory cortex) were examined. First, the phase synchrony or inter-trial coherence (ITC) of the ASSR is diminished in ASD; second, hemispheric bias in the ASSR, observed in typical development (TD), is maintained in ASD, and third, that the frequency at which the peak response is obtained varies on an individual basis, in part dependent on age, and with altered developmental trajectories in ASD vs. TD. Finally, there appears an association between auditory steady-state phase synchrony (taken as a proxy of neuronal circuitry integrity) and clinical assessment of language ability/impairment. We concluded that (1) the AM sweep stimulus provides a mechanism for probing ASSR in an unbiased fashion, during developmental maturation of peak response frequency, (2) peak frequencies vary, in part due to developmental age, and importantly, (3) ITC at this peak frequency is diminished in ASD, with the degree of ITC disturbance related to clinically assessed language impairment.


Author(s):  
Song Chen ◽  
Zhen He ◽  
Chaoping Qian ◽  
Jianping Li ◽  
Zhonghua Zhang ◽  
...  

A piezoelectric micro gas compressor with parallel-serial hybrid chambers (PMGCPS) is presented, which consists of two compression stages of stage I and stage II. The stage I is composed of two piezoelectric driving units connected in parallel, while stage II is composed of a piezoelectric driving unit, forming an integral tower compression structure. Based on the tower compression structure, the PMGCPS owns the dual advantages of large flow rate and high output pressure. The prototype of PMGCPS is designed and manufactured. The driving frequency and voltage characteristics of PMGCPS are experimented. Under the driving frequency of 300 Hz and the driving voltage of 300 Vpp, the maximum flow rate and output pressure of PMGCPS is 795.6 mL/min and 13.4 kPa, respectively. PMGCPS provides new ideas for the further development of piezoelectric micro gas compressor.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4310
Author(s):  
Keita Shimizu ◽  
Toshiaki Nagai ◽  
Jun Shintake

Dielectric elastomer actuators (DEAs) are one of the promising actuation technologies for soft robotics. This study proposes a fiber-shaped DEA, namely dielectric elastomer fiber actuators (DEFAs). The actuator consisted of a silicone tube filled with the aqueous electrode (sodium chloride solution). Furthermore, it could generate linear and bending actuation in a water environment, which acts as the ground side electrode. Linear-type DEFA and bending-type DEFA were fabricated and characterized to prove the concept. A mixture of Ecoflex 00–30 (Smooth-On) and Sylgard 184 (Dow Corning) was employed in these actuators for the tube part, which was 75.0-mm long with outer and inner diameters of 6.0 mm and 5.0 mm, respectively. An analytical model was constructed to design and predict the behavior of the devices. In the experiments, the linear-type DEFA exhibited an actuation strain and force of 1.3% and 42.4 mN, respectively, at 10 kV (~20 V/µm) with a response time of 0.2 s. The bending-type DEFA exhibited an actuation angle of 8.1° at 10 kV (~20 V/µm). Subsequently, a jellyfish-type robot was developed and tested, which showed the swimming speed of 3.1 mm/s at 10 kV and the driving frequency of 4 Hz. The results obtained in this study show the successful implementation of the actuator concept and demonstrate its applicability for soft robotics.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 753-753
Author(s):  
Zainab Suntai ◽  
Kefentse Kubanga ◽  
Abhay Lidbe ◽  
Emmanuel Adanu

Abstract The activity theory of aging suggests that older adults age successfully when they remain active and engaged. While many older adults are still able to drive, not all are as engaged in social activities, despite having the transportation to be able to do so. As such, this study aimed to examine the association between the frequency of driving and overall well-being among older adults. The hypothesis is that older adults who drive more frequently would have higher well-being, as they are likely driving to engaging activities. A sample of 1,663 older adults who reported that they are able to drive were derived from the 2018 National Health and Aging Trends Study (NHATS). The NHATS is an annual longitudinal panel of survey of adults aged 65 and older living in the United States. Chi-square tests were used for bivariate analyses and a weighted multivariable logistic regression model was used to predict well-being based on driving frequency. Results showed that compared to those who drive every day, those who drive most days (OR=0.771, CI= [0.768-0.775]), some days (OR=0.495, CI= [0.492-0.497]), rarely (OR=0.558, CI= [0.555-0.562]) or never (OR=0.371, CI= [0.367-0.374]) were less likely to have high well-being. Interventions geared at improving well-being among older adults should therefore consider increasing awareness of social events, to ensure that older adults who are able to drive can have a good quality of life by driving to social activities.


Sign in / Sign up

Export Citation Format

Share Document