van der pol oscillator
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 79)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 24 (4) ◽  
pp. 19-24
Author(s):  
Valery V. Zaitsev ◽  
Alexander V. Karlov

For sampling of time in a differential equation of movement of Thomson type oscillator (generator) it is offered to use a combination of the numerical method of finite differences and an asymptotic method of the slowl-changing amplitudes. The difference approximations of temporal derivatives are selected so that, first, to save conservatism and natural frequency of the linear circuit of self-oscillatory system in the discrete time. Secondly, coincidence of the difference shortened equation for the complex amplitude of self-oscillations in the discrete time with Eulers approximation of the shortened equation for amplitude of self-oscillations in analog system prototype is required. It is shown that realization of such approach allows to create discrete mapping of the van der Pol oscillator and a number of mappings of Thomson type oscillators. The adequacy of discrete models to analog prototypes is confirmed with also numerical experiment.


2022 ◽  
Author(s):  
Mikhail E. Semenov ◽  
Sergei V. Borzunov ◽  
Peter A. Meleshenko

Abstract One of the most important problems of nonlinear dynamics is related to the development of methods concerning the identification of the dynamical modes of the corresponding systems. The classical method is related to the calculation of the Lyapunov characteristic exponents ( LCEs ). Usually, to implement the classical algorithms for the LCEs calculation the smoothness of the right-hand sides of the corresponding equations is required. In this work, we propose a new algorithm for the LCEs computation in systems with strong nonlinearities (these nonlinearities can not be linearized ) including the hysteresis. This algorithm uses the values of the Jacobi matrix in the vicinity of singularities of the right-hand sides of the corresponding equations. The proposed modification of the algorithm is also can be used for systems containing such design hysteresis nonlinearity as the Preisach operator (thus, this modification can be used for all members of the hysteresis family). Moreover, the proposed algorithm can be successfully applied to the well-known chaotic systems with smooth nonlinearities . Examples of dynamical systems with hysteresis nonlinearities , such as the Lorentz system with hysteresis friction and the van der Pol oscillator with hysteresis block, are considered. These examples illustrate the efficiency of the proposed algorithm.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 88
Author(s):  
Chedhli Hafien ◽  
Abdellatif Messaoudi

To understand the nonlinear interaction between unsteady aerodynamic forces and the kinematics of structures, we theoretically and numerically investigated the characteristics of lift coefficients produced by a flapping thin flat plate controlled by the rotation axis position. The flat plate was placed in a 2-D incompressible flow at a very low Reynolds number (Re = 300). We showed that the behavior of the unsteady aerodynamic forces suggests the existence of a limit cycle. In this context, we developed a Reduced Order Model (ROM) by resolving the modified van der Pol oscillator using the Taylor development method and computational fluid dynamics (CFD) solutions. A numerical solution was obtained by integrating the differential equation of the modified van der Pol oscillator using the fourth-order Runge–Kutta method (RK4). The model was validated by comparing this solution with the reformulated equation of the added mass lift coefficient. Using CFD and ROM solutions, we analyzed the dependency of the unsteady lift coefficient generation on the kinematics of the flapping flat plate. We showed that the evolution of the lift coefficient is influenced by the importance of the rotation motion of the Leading Edge (LE) or Trailing Edge (TE), according to the position of the rotation axis. Indeed, when the rotation axis is moved towards the LE, the maximum and the minimum values of the lift coefficient are proportional to the downward and upward motions respectively of the TE and the rotation axis. However, when the rotation axis is moved towards the TE, the maximum and the minimum values of the lift coefficient are proportional to the downward and upward motions respectively of the LE and the rotation axis.


2021 ◽  
Author(s):  
Shuai Wang ◽  
Yong Li

Abstract In this paper, we try to discuss the mechanism of synchronization or cluster synchronization in the coupled Van der Pol oscillator networks with different topology types by using the theory of rotating periodic solutions. The synchronous solutions here are transformed into rotating periodic solutions of some dynamical systems. By analyzing the bifurcation of rotating periodic solutions, the critical conditions of synchronous solutions are given in three different networks. We use the rotating periodic matrix in the rotating periodic theory to judge various types of synchronization phenomena, such as complete synchronization, anti-phase synchronization, periodic synchronization, or cluster synchronization. All rotating periodic matrices which satisfy the exchange invariance of multiple oscillators form special groups in these networks. By using the conjugate classes of these groups, we obtain various possible synchronization solutions in the three networks. In particular, we find symmetry has different effects on synchronization in different networks. The network with better symmetry has more elements in the corresponding group, which may have more types of synchronous solutions. However, different types of symmetry may get the same type of synchronous solutions or different types of synchronous solutions, depending on whether their corresponding rotating periodic matrices are similar.


Author(s):  
N. D. Anh ◽  
Nguyen Ngoc Linh ◽  
Nguyen Nhu Hieu ◽  
Nguyen Van Manh ◽  
Anh Tay Nguyen

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3229
Author(s):  
Irina Bashkirtseva

The problem of synthesis of stochastic sensitivity for equilibrium modes in nonlinear randomly forced dynamical systems with incomplete information is considered. We construct a feedback regulator that uses noisy data on some system state coordinates. For parameters of the regulator providing assigned stochastic sensitivity, a quadratic matrix equation is derived. Attainability of the assigned stochastic sensitivity is reduced to the solvability of this equation. We suggest a constructive algorithm for solving this quadratic matrix equation. These general theoretical results are used to solve the problem of stabilizing equilibrium modes of nonlinear stochastic oscillators under conditions of incomplete information. Details of our approach are illustrated on the example of a van der Pol oscillator.


2021 ◽  
Author(s):  
Joakim Vianney Ngamsa Tegnitsap ◽  
Merlin Brice Saatsa Tsefack ◽  
Elie Bertrand Megam Ngouonkadi ◽  
Hilaire Bertrand Fotsin

Abstract In this work, the dynamic of the triode-based Van der Pol oscillator coupled to a linear circuit is investigated (Triode-based VDPCL oscillator). Towards this end, we present a mathematical model of the triode, chosen from among the many different ones present in literature. The dynamical behavior of the system is investigated using classical tools such as two-parameter Lyapunov exponent, one-parameter bifurcation diagram associated with the graph of largest Lyapunov exponent, phase portraits, and time series. Numerical simulations reveal rather rich and complex phenomena including chaos, transient chaos, the coexistence of solutions, crisis, period-doubling followed by reverse period-doubling sequences (bubbles), and bursting oscillation. The coexistence of attractors is illustrated by the phase portraits and the cross-section of the basin of attraction. Such triode-based nonlinear oscillators can find their applications in many areas where ultra-high frequencies and high powers are demanded (radio, radar detection, satellites communication, etc.) since triode can work with these performances and are often used in the aforementioned areas. In contrast to some recent work on triode-based oscillators, LTSPICE simulations, based on real physical consideration of the triode, are carried out in order to validate the theoretical results obtained in this paper as well as the mathematical model adopted for the triode.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2444
Author(s):  
Yani Chen ◽  
Youhua Qian

In this paper, the normal form and central manifold theories are used to discuss the influence of two-degree-of-freedom coupled van der Pol oscillators with time delay feedback. Compared with the single-degree-of-freedom time delay van der Pol oscillator, the system studied in this paper has richer dynamical behavior. The results obtained include: the change of time delay causing the stability switching of the system, and the greater the time delay, the more complicated the stability switching. Near the double Hopf bifurcation point, the system is simplified by using the normal form and central manifold theories. The system is divided into six regions with different dynamical properties. With the above results, for practical engineering problems, we can perform time delay feedback adjustment to make the system show amplitude death, limit loop, and so on. It is worth noting that because of the existence of unstable limit cycles in the system, the limit cycle cannot be obtained by numerical solution. Therefore, we derive the approximate analytical solution of the system and simulate the time history of the interaction between two frequencies in Region IV.


Sign in / Sign up

Export Citation Format

Share Document