scholarly journals Greater Trochanteric Fixation Using a Cable System for Partial Hip Arthroplasty: A Clinical and Finite Element Analysis

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fırat Ozan ◽  
Şemmi Koyuncu ◽  
Mahmut Pekedis ◽  
Taşkın Altay ◽  
Hasan Yıldız ◽  
...  

The aim of the study was to investigate the efficacy of greater trochanteric fixation using a multifilament cable to ensure abductor lever arm continuity in patients with a proximal femoral fracture undergoing partial hip arthroplasty. Mean age of the patients (12 men, 20 women) was 84.12 years. Mean follow-up was 13.06 months. Fixation of the dislocated greater trochanter with or without a cable following load application was assessed by finite element analysis (FEA). Radiological evaluation was based on the distance between the fracture and the union site. Harris hip score was used to evaluate final results: outcomes were excellent in 7 patients (21.8%), good in 17 patients (53.1%), average in 5 patients (15.6%), and poor in 1 patient (9.3%). Mean abduction angle was 20.21°. Union was achieved in 14 patients (43.7%), fibrous union in 12 (37.5%), and no union in 6 (18.7%). FEA showed that the maximum total displacement of the greater trochanter decreased when the fractured bone was fixed with a cable. As the force applied to the cable increased, the displacement of the fractured trochanter decreased. This technique ensures continuity of the abductor lever arm in patients with a proximal femoral fracture who are undergoing partial hip arthroplasty surgery.

Author(s):  
Yangyang Cui ◽  
Dingding Xiang ◽  
Liming Shu ◽  
Zhenhua Liao ◽  
Zhilin Zhang ◽  
...  

Numerical simulation of the proximal femur could provide an effective approach to predict the femoral fracture risk. However, most of the extant numerical simulations are static simulations, which cannot accurately reflect the dynamic growth process of cracks. In this study, the dynamic simulation by incremental element deletion (IED) based finite element analysis (FEA) was developed on femur fracture analysis and compared with two widly-used approaches (XFEM and USDFLD). It was also evaluated using the in-vitro loading test. Moreover, the effects of different impact speeds, fall postures, and cortical thicknesses on fracture types and mechanical responses were investigated. Impact speeds cause different crack propagation behaviors of the femoral neck. Falling forward was less likely to cause proximal femoral fracture compared with falling backward. The model with thin cortical bone was prone to fracture. These provides a theoretical basis and method for predicting femoral fracture risk in the elderly.


2002 ◽  
Author(s):  
D. Leone ◽  
L. Breglia ◽  
J. Gander ◽  
J. Ibets ◽  
C. Teeling ◽  
...  

2020 ◽  
Author(s):  
Shuang G Yan ◽  
Yan Chevalier ◽  
Fanxiao Liu ◽  
Xingyi Hua ◽  
Anna Schreiner ◽  
...  

Abstract Background: Short stem total hip arthroplasty (SHA) preserves femoral bone stock and is supposed to provide a more natural load transfer compared to standard stem total hip arthroplasty (THA). As comparative biomechanical reference data are rare we used a finite element analysis (FEA) approach to compare cortical load transfer after implantations of a metaphyseal anchoring short and standard stem in native biomechanical femora. Methods: The subject specific finite element models of biomechanical femora, one native and two with implanted metaphyseal anchoring SHA (Metha, B.Braun Aesculap) and standard THA (CLS, Zimmer-Biomet), were generated from computed tomography datasets. The loading configuration was performed with an axial force of 1400 N. Von Mises stress was used to investigate the change of cortical stress distribution. Results: Compared to the native femur, a considerable reduction of cortical stress was recorded after implantation of SHA and standard THA. The SHA showed less reduction proximally with a significant higher metaphyseal cortical stress compared to standard THA. Moreover, the highest peak stresses were observed metaphyseal for the SHA stem while for the standard THA high stress pattern was observed more distally. Conclusions: Both, short and standard THA, cause unloading of the proximal femur. However, the metaphyseal anchoring SHA features a clearly favorable pattern in terms of a lower reduction proximally and improved metaphyseal loading, while standard THA shows a higher proximal unloading and more distal load transfer. These load pattern implicate a reduced stress shielding proximally for metaphyseal anchoring SHA stems and might be able to translate in a better bone preservation.


2020 ◽  
Author(s):  
Shuang G Yan ◽  
Yan Chevalier ◽  
Fanxiao Liu ◽  
Xingyi Hua ◽  
Anna Schreiner ◽  
...  

Abstract Background: Short stem total hip arthroplasty (SHA) preserves femoral bone stock and is supposed to provide a more natural load transfer compared to standard stem total hip arthroplasty (THA). As comparative biomechanical reference data are rare we used a finite element analysis (FEA) approach to compare cortical load transfer after implantations of a cementless short and standard stem in native biomechanical femora.Methods: The subject specific finite element models of biomechanical femora, one native and two with implanted SHA (Metha, B.Braun Aesculap) and standard THA (CLS, Zimmer-Biomet), were generated from computed tomography datasets. The loading configuration was performed with an axial force of 1400 N. Von Mises stress was used to investigate the change of cortical stress distribution.Results: Compared to the native femur, a considerable reduction of cortical stress was recorded after implantation of SHA and standard THA. The SHA showed less reduction proximally with a significant higher metaphyseal cortical stress compared to standard THA. Moreover, the highest peak stresses were observed metaphyseal for the SHA stem while for the standard THA high stress pattern was observed more distally.Conclusions: Both, short and standard THA, cause unloading of the proximal femur. However, SHA features a clearly favorable pattern in terms of a lower reduction proximally and improved metaphyseal loading, while standard THA shows a higher proximal unloading and more distal load transfer. These load pattern implicate a reduced stress shielding proximally for SHA and might be able to translate in a better bone preservation.


Sign in / Sign up

Export Citation Format

Share Document