scholarly journals Simulation of Vortex Shedding behind a Flat Plate with Vorticity Based Adaptive Spectral Element Method

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Li-Chieh Hsu ◽  
Guo-Jhih Gao

Vorticity error based adaptive meshes refinement scheme is developed and employed using spectral element method to simulate flow past object problems. In general, it is hard to predict and enhance meshes effectively in a region where the error is larger in the computational domain by using the conforming mesh method. Employing finer meshes throughout the whole domain leads to lengthy computational time and excessive storage. Therefore, an indicator is used to predict the regions where larger errors exist and mesh refinement is needed. To compare the efficiency of indicators, three kinds of properties are used as mesh refinement indicators, including the synthesis of velocity and pressure estimated error, vorticity estimated error, and estimated error decay rate. Simulations of the cavity flow in Re = 100 and 1000 and the cases of flow past an inclined flat plate in Re = 100 to 1000 are performed with the adaptive mesh method and conforming mesh method. The results show that the adaptive mesh method can provide the same accuracy as that of the conforming mesh method with only 62% of the elements.

2016 ◽  
Vol 33 (2) ◽  
pp. 235-247 ◽  
Author(s):  
L.-C. Hsu ◽  
J.-Z. Ye ◽  
C.-H. Hsu

AbstractThe simulations of flow past a two-dimensional circular cylinder are conducted to investigate the feasibility of adaptive mesh refinement applied on curved spectral elements. The nonconforming spectral element method and adaptive meshes technique are used to the curve surfaces and observe whether any discontinuity of the solutions. The adaptive nonconforming spectral element method is implemented to compare with those obtained by conforming mesh method with respect to several existing numerical and experimental studies. Meanwhile, three kinds of estimated error base mesh adaptation are conducted to compare their accuracy and efficiency with conforming mesh method. The results show adaptive nonconforming mesh method is more efficient than the conforming method. Especially, the vorticity error based method performs highest accuracy and fastest convergence. The results show this mesh refinement technique is applicable on the curved elements with satisfactory accuracy. It releases this technique may be applied on the simulations of flow past objects with more general geometries.


2013 ◽  
Vol 84 ◽  
pp. 100-112 ◽  
Author(s):  
Zhaolong Han ◽  
Dai Zhou ◽  
Xiaolan Gui ◽  
Jiahuang Tu

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Dmitriy Konovalov ◽  
Anatoly Vershinin ◽  
Konstantin Zingerman ◽  
Vladimir Levin

Modern high-performance computing systems allow us to explore and implement new technologies and mathematical modeling algorithms into industrial software systems of engineering analysis. For a long time the finite element method (FEM) was considered as the basic approach to mathematical simulation of elasticity theory problems; it provided the problems solution within an engineering error. However, modern high-tech equipment allows us to implement design solutions with a high enough accuracy, which requires more sophisticated approaches within the mathematical simulation of elasticity problems in industrial packages of engineering analysis. One of such approaches is the spectral element method (SEM). The implementation of SEM in a CAE system for the solution of elasticity problems is considered. An important feature of the proposed variant of SEM implementation is a support of hybrid curvilinear meshes. The main advantages of SEM over the FEM are discussed. The shape functions for different classes of spectral elements are written. Some results of computations are given for model problems that have analytical solutions. The results show the better accuracy of SEM in comparison with FEM for the same meshes.


Sign in / Sign up

Export Citation Format

Share Document