scholarly journals A Random Parameter Model for Continuous-Time Mean-Variance Asset-Liability Management

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Hui-qiang Ma ◽  
Meng Wu ◽  
Nan-jing Huang

We consider a continuous-time mean-variance asset-liability management problem in a market with random market parameters; that is, interest rate, appreciation rates, and volatility rates are considered to be stochastic processes. By using the theories of stochastic linear-quadratic (LQ) optimal control and backward stochastic differential equations (BSDEs), we tackle this problem and derive optimal investment strategies as well as the mean-variance efficient frontier analytically in terms of the solution of BSDEs. We find that the efficient frontier is still a parabola in a market with random parameters. Comparing with the existing results, we also find that the liability does not affect the feasibility of the mean-variance portfolio selection problem. However, in an incomplete market with random parameters, the liability can not be fully hedged.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ling Zhang

This paper considers a continuous-time mean-variance asset-liability management problem with incompletely observable information. An investor can only observe the prices of the asset and liability and the dynamics of the unobservable states of the underlying financial market is described by a hidden Markovian chain. The price of the risky asset is assumed to be governed by a hidden Markovian regime switching geometric Brownian motion and the liability is assumed to follow a hidden Markovian regime switching Brownian motion with drift, respectively. The appreciation rates of the risky asset and the liability are modulated by the hidden Markovian chain. By using the separation principle, the filtering-estimation problem and the mean-variance asset-liability management problem are discussed. The explicit expressions for the optimal asset-liability management strategy and the mean-variance efficient frontier are determined by using the stochastic maximum principle.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Hui-qiang Ma

We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV) process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance efficient frontier analytically. The results show that the mean-variance efficient frontier is still a parabola in the mean-variance plane, and the optimal strategies depend not only on the total wealth but also on the stock price. Moreover, some numerical examples are given to analyze the sensitivity of the efficient frontier with respect to the elasticity parameter and to illustrate the results presented in this paper. The numerical results show that the price of risk decreases as the elasticity coefficient increases.


2016 ◽  
Vol 58 (2) ◽  
pp. 162-181 ◽  
Author(s):  
ZHIQIN MING ◽  
ZHIBIN LIANG ◽  
CAIBIN ZHANG

We consider the optimal proportional reinsurance problem for an insurer with two dependent classes of insurance business, where the two claim number processes are correlated through a common shock component. Using the technique of stochastic linear–quadratic control theory and the Hamilton–Jacobi–Bellman equation, we derive the explicit expressions for the optimal reinsurance strategies and value function, and present the verification theorem within the framework of the viscosity solution. Furthermore, we extend the results in the linear–quadratic setting to the mean–variance problem, and obtain an efficient strategy and frontier. Some numerical examples are given to show the impact of model parameters on the efficient frontier.


Sign in / Sign up

Export Citation Format

Share Document