An Alternate Iterative Differential Evolution Algorithm for Parameter Identification of Chaotic Systems
Parameter estimation of chaotic systems plays a key role for control and synchronization of chaotic systems. At first, the parameter estimation of chaotic systems is mathematically formulated as a global continuous optimization problem. Then through integrating two differential mutation strategies, an improved greedy selection mechanism and a population diversity balance scheme, an alternate iterative differential algorithm, called AIDE, is presented to solve the problem in this paper. Subsequently, experiments are tested on a set of cases of parameter estimation of chaotic systems and the results show that AIDE is better than or at least equal to DE/rand/1/bin, DE/best/1/bin, and other four well-known algorithms in all cases.