scholarly journals N Mineralisation from Bioresources Incubated at 12.5°C

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
S. W. Ives ◽  
L. A. Sparrow ◽  
W. E. Cotching ◽  
R. B. Doyle ◽  
S. Lisson

Soils treated with lime-amended biosolids (LAB), poppy seed waste (PSW), anaerobically digested biosolids (ADB) and poppy mulch (PM) and incubated at 12.5°C for 56 days released 45%, 36%, 25%, and −8%, respectively, of total applied N as plant available nitrogen (PAN) by the end of the incubation. The mineralisation rates were contrary to expectations based on the C : N ratios of the four products: LAB (5 : 1), PSW (7 : 1), ADB (3 : 1), and PM (16 : 1). PM showed a significant negative priming effect over the incubation period. These results have implications for production agriculture in temperate regions where application and incorporation of bio-resources traditionally occurs in autumn and spring when soil and air temperatures are relatively low. Current application times may not be suitable for nitrogen release to satisfy crop demand.

2020 ◽  
Vol 92 (4) ◽  
pp. 631-640 ◽  
Author(s):  
Olawale Oladeji ◽  
Guanglong Tian ◽  
Pauline Lindo ◽  
Kuldip Kumar ◽  
Albert Cox ◽  
...  

2006 ◽  
Vol 35 (6) ◽  
pp. 2321-2332 ◽  
Author(s):  
Eric S. Gale ◽  
Dan M. Sullivan ◽  
Craig G. Cogger ◽  
Andy I. Bary ◽  
Delbert D. Hemphill ◽  
...  

2006 ◽  
Vol 20 (3) ◽  
pp. 186-194 ◽  
Author(s):  
Susanne Mayr ◽  
Michael Niedeggen ◽  
Axel Buchner ◽  
Guido Orgs

Responding to a stimulus that had to be ignored previously is usually slowed-down (negative priming effect). This study investigates the reaction time and ERP effects of the negative priming phenomenon in the auditory domain. Thirty participants had to categorize sounds as musical instruments or animal voices. Reaction times were slowed-down in the negative priming condition relative to two control conditions. This effect was stronger for slow reactions (above intraindividual median) than for fast reactions (below intraindividual median). ERP analysis revealed a parietally located negativity of the negative priming condition compared to the control conditions between 550-730 ms poststimulus. This replicates the findings of Mayr, Niedeggen, Buchner, and Pietrowsky (2003) . The ERP correlate was more pronounced for slow trials (above intraindividual median) than for fast trials (below intraindividual median). The dependency of the negative priming effect size on the reaction time level found in the reaction time analysis as well as in the ERP analysis is consistent with both the inhibition as well as the episodic retrieval account of negative priming. A methodological artifact explanation of this effect-size dependency is discussed and discarded.


2013 ◽  
Vol 105 (2) ◽  
pp. 539-545 ◽  
Author(s):  
M. S. Wells ◽  
S. C. Reberg-Horton ◽  
A. N. Smith ◽  
J. M. Grossman

2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Isamu Maeda

Biological nitrogen fixation catalyzed by Mo-nitrogenase of symbiotic diazotrophs has attracted interest because its potential to supply plant-available nitrogen offers an alternative way of using chemical fertilizers for sustainable agriculture. Phototrophic purple nonsulfur bacteria (PNSB) diazotrophically grow under light anaerobic conditions and can be isolated from photic and microaerobic zones of rice fields. Therefore, PNSB as asymbiotic diazotrophs contribute to nitrogen fixation in rice fields. An attempt to measure nitrogen in the oxidized surface layer of paddy soil estimates that approximately 6–8 kg N/ha/year might be accumulated by phototrophic microorganisms. Species of PNSB possess one of or both alternative nitrogenases, V-nitrogenase and Fe-nitrogenase, which are found in asymbiotic diazotrophs, in addition to Mo-nitrogenase. The regulatory networks control nitrogenase activity in response to ammonium, molecular oxygen, and light irradiation. Laboratory and field studies have revealed effectiveness of PNSB inoculation to rice cultures on increases of nitrogen gain, plant growth, and/or grain yield. In this review, properties of the nitrogenase isozymes and regulation of nitrogenase activities in PNSB are described, and research challenges and potential of PNSB inoculation to rice cultures are discussed from a viewpoint of their applications as nitrogen biofertilizer.


2016 ◽  
pp. 23-28
Author(s):  
Andrea Balláné Kovács ◽  
Rita Kremper ◽  
Ida Kincses ◽  
Ágnes Leviczky

A greenhouse pot experiment was conducted to compare the effects of manure with different origin (horse, cattle), various bedding materials (straw, sawdust) and diverse doses (30 t ha-1, 60 t ha-1) and the impact of food waste compost on the plant growth and the available plant nutrient content of soil. The study was conducted on humic sandy soil and consisted of 9 treatments in a randomized complete block design with four replications. Spinach (Spinacia oleracea L.) was grown as the test crop. The treatments were: 1. unfertilized control; 2. horse manure with straw (30 t ha-1); 3. horse manure with sawdust (30 t ha-1); 4. cattle manure (30 t ha-1); 5 food waste compost (30 t ha-1); 6. horse manure with straw (60 t ha-1); 7. horse manure with sawdust (60 t ha-1); 8. cattle manure (60 t ha-1); 9. food waste compost (60 t ha-1). Plant growth was monitored for 4 weeks. Shoot and root weights per pot were measured, total biomass weight per pot were counted. On the basis of the results it can be concluded, that among treatments the application of horse manure with straw enhanced spinach growth most significantly compared to other treatments and to the non-treated control, resulted the highest weights of leaves and roots of spinach. At the same time even small dose (30 t ha-1) of this fertilizer caused increased plant available nitrogen and phosphorus of soil and the higher dosage further increased these values. The horse manure with sawdust applied in lower dose did not alter the leaves and roots weights, but higher portion (60 t ha-1) caused significantly decreased plant biomass. The results proved that the bedding material may significantly alter the composition of manure and may change the plant nutrition effect of organic fertilizer. Cattle manure and food waste compost in both applied doses enhanced plant growth. Both fertilizers increased the plant available nitrogen forms and phosphorus content of soil, but cattle manure caused higher increase.


2010 ◽  
Vol 61 (3) ◽  
pp. 384-391 ◽  
Author(s):  
B. Guenet ◽  
J. Leloup ◽  
X. Raynaud ◽  
G. Bardoux ◽  
L. Abbadie

2016 ◽  
Vol 628 ◽  
pp. 35-39 ◽  
Author(s):  
Fada Pan ◽  
Liang Shi ◽  
Qingyun Lu ◽  
Xiaogang Wu ◽  
Song Xue ◽  
...  

Author(s):  
Evdokia Anagnostou ◽  
Deepali Mankad ◽  
Joshua Diehl ◽  
Catherine Lord ◽  
Sarah Butler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document