scholarly journals Lidar-Based Detection and Interpretation of Glaciotectonic Features of the Morainic Topography of Finland

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Matti Veli Juhani Seppälä

In Finland’s digital elevation model, marks of glaciotectonics as an important formation process of glacial geomorphology can be seen. This is a new finding to this extent regarding central parts of the former ice sheets. Deformational processes produced fragmented till surfaces probably mostly by brittle fracture of frozen till. Good signs of deformational effect to the till surfaces are the plucked edges or steps and semilinear or fan-like quarry edges in topography, which are often oblique compared with the main direction of the flow of the glacier. Plucked fractured steps of blocks of till can be so tight that they construct horizontal-like diamond patterned surfaces. Sometimes punctate proximal endings of fan-like hollows of transported rafts can be seen. Within main ice lobes or streams the glaciated terrain is often divided into longitudinal smooth looking drumlin terrain and into rough erosional slightly lower level situated zones, where the erosion has happened firstly by glaciotectonism and then by glaciofluvial streams. The eskers and different kind of hummocky moraines are often located in same zones. Among them deformational hummocky moraines and ribbed moraines are common. The abundance of glaciotectonic and plucking related features indicates that the base of the receding ice sheet was cold based in places or from time to time.

2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


Sign in / Sign up

Export Citation Format

Share Document