scholarly journals Novel SGH Recognition Algorithm Based Robot Binocular Vision System for Sorting Process

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Xiaoyang Yu ◽  
Shuang Liu ◽  
Ming Pang ◽  
Jixun Zhang ◽  
Shuchun Yu

To achieve automatic sorting on commodity trademarks, a binocular vision system has been constructed in this paper. By adjusting camera pose, this system can obtain greater shooting perspective. In order to improve sorting accuracy, a now SGH recognition method is proposed. SGH consists of spatial color histogram (Sfeature), gray level cooccurrence matrix (Gfeature), and Hu moments (H) feature, which represent color feature, texture feature, and shaper feature, respectively. Similarity judgment function is built by using SGH. The experimental results show that SGH algorithm has a higher visual accuracy compared to single feature based recognition method.

Robotica ◽  
2007 ◽  
Vol 25 (5) ◽  
pp. 615-626 ◽  
Author(s):  
Wen-Chung Chang

SUMMARYRobotic manipulators that have interacted with uncalibrated environments typically have limited positioning and tracking capabilities, if control tasks cannot be appropriately encoded using available features in the environments. Specifically, to perform 3-D trajectory following operations employing binocular vision, it seems necessary to have a priori knowledge on pointwise correspondence information between two image planes. However, such an assumption cannot be made for any smooth 3-D trajectories. This paper describes how one might enhance autonomous robotic manipulation for 3-D trajectory following tasks using eye-to-hand binocular visual servoing. Based on a novel encoded error, an image-based feedback control law is proposed without assuming pointwise binocular correspondence information. The proposed control approach can guarantee task precision by employing only an approximately calibrated binocular vision system. The goal of the autonomous task is to drive a tool mounted on the end-effector of the robotic manipulator to follow a visually determined smooth 3-D target trajectory in desired speed with precision. The proposed control architecture is suitable for applications that require precise 3-D positioning and tracking in unknown environments. Our approach is successfully validated in a real task environment by performing experiments with an industrial robotic manipulator.


2014 ◽  
Vol 22 (8) ◽  
pp. 9134 ◽  
Author(s):  
Yi Cui ◽  
Fuqiang Zhou ◽  
Yexin Wang ◽  
Liu Liu ◽  
He Gao

Sign in / Sign up

Export Citation Format

Share Document