scholarly journals Intelligent Fault Diagnosis in a Power Distribution Network

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Oluleke O. Babayomi ◽  
Peter O. Oluseyi

This paper presents a novel method of fault diagnosis by the use of fuzzy logic and neural network-based techniques for electric power fault detection, classification, and location in a power distribution network. A real network was used as a case study. The ten different types of line faults including single line-to-ground, line-to-line, double line-to-ground, and three-phase faults were investigated. The designed system has 89% accuracy for fault type identification. It also has 93% accuracy for fault location. The results indicate that the proposed technique is effective in detecting, classifying, and locating low impedance faults.

Author(s):  
Alok Kumar Mishra ◽  
Soumya Ranjan Das ◽  
Prakash Kumar Ray ◽  
Ranjan Kumar Mallick ◽  
Himansu Das

Aims : The main focus in this work is to improve balanced and sinusoidal grid currents by feeding compensating current at point of common coupling (PCC). Background: In recent years the advancement in electronics and electrical appliances are widely improved and are also more sophisticated. These appliances require uninterrupted and quality power. Therefore in the growing power system scenario, several issues like malfunction of electrical sensitive devices, overheat in transformer, interference in communication, failures in computer network etc., adversely affects the power quality (PQ). These issues are generated due to rapid use of non-linear loads in three-phase system which generates harmonics in the system. To overcome from these PQ issues, several PQ mitigation custom power devices are integrated in power distribution network. But, the conventional PQ mitigation devices are insufficient to eliminate PQ problems such as current and voltage harmonics, voltage sag/swell and voltage unbalances associated with the power distribution network. Objective : The objective of using A-PSO is to find the global optimum of the spread factor parameter at the upper level. APSO, has a faster convergence speed and correct response compared to the PSO algorithm. Method : SO A-PSO M p-q. Result: A-PSO is giving better results than PSO. Conclusion : A three-phase system with SHAPF injected at PCC is proposed in this paper. The SHAPF injects filter current at PCC for supressing the harmonics using a modified pq scheme. For controlling the PIC, two optimised parameters are discussed and found that reducing the harmonics distortions using A-PSO is giving better results compare to the conventional PSO.


2018 ◽  
Vol 2018 (15) ◽  
pp. 1326-1329 ◽  
Author(s):  
Shenxing Shi ◽  
Aoyu Lei ◽  
Xin He ◽  
Sohrab Mirsaeidi ◽  
Xinzhou Dong

Sign in / Sign up

Export Citation Format

Share Document