scholarly journals Selection and Characterization of Potential Baker’s Yeast from Indigenous Resources of Nepal

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Tika B. Karki ◽  
Parash Mani Timilsina ◽  
Archana Yadav ◽  
Gyanu Raj Pandey ◽  
Yogesh Joshi ◽  
...  

The study aims to isolate the yeast strains that could be used effectively as baker’s yeast and compare them with the commercial baker’s yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree “Dar” were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wallerstein Laboratory Nutrient Agar. From the differential tests which included morphological and microscopic observation and physiological and biochemical characterization such as nitrate reduction and lactose utilization tests, 8 strains were selected as possible Saccharomyces strain. The selected strains were further assessed for their efficient leavening ability by tests such as ethanol tolerance, osmotolerance, invertase test, and stress exclusion test. The three most potent strains ENG, MUR3B, and SUG1 isolated from grape, Murcha, and sugarcane, respectively, were used in the fermentation and baking of dough. These strains also carried a possibility of being used as industrial baker’s yeast.

1978 ◽  
Vol 253 (7) ◽  
pp. 2392-2399 ◽  
Author(s):  
J.N. Siedow ◽  
S. Power ◽  
F.F. de la Rosa ◽  
G. Palmer

2014 ◽  
Vol 154 (4) ◽  
pp. 543-559 ◽  
Author(s):  
Rajeev N Bahuguna ◽  
Jyoti Jha ◽  
Madan Pal ◽  
Divya Shah ◽  
Lovely MF Lawas ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Xue Lin ◽  
Cui-Ying Zhang ◽  
Xiao-Wen Bai ◽  
Hai-Yan Song ◽  
Dong-Guang Xiao

2001 ◽  
Vol 194 (2) ◽  
pp. 159-162 ◽  
Author(s):  
Reiko Hirasawa ◽  
Kumio Yokoigawa

2018 ◽  
Vol 84 (12) ◽  
Author(s):  
Daisuke Watanabe ◽  
Hiroshi Sekiguchi ◽  
Yukiko Sugimoto ◽  
Atsushi Nagasawa ◽  
Naotaka Kida ◽  
...  

ABSTRACT Freeze-thaw stress causes various types of cellular damage, survival and/or proliferation defects, and metabolic alterations. However, the mechanisms underlying how cells cope with freeze-thaw stress are poorly understood. Here, model dough fermentations using two baker's yeast strains, 45 and YF, of Saccharomyces cerevisiae were compared after 2 weeks of cell preservation in a refrigerator or freezer. YF exhibited slow fermentation after exposure to freeze-thaw stress due to low cell viability. A DNA microarray analysis of the YF cells during fermentation revealed that the genes involved in oxidative phosphorylation were relatively strongly expressed, suggesting a decrease in the glycolytic capacity. Furthermore, we found that mRNA levels of the genes that encode the components of the proteasome complex were commonly low, and ubiquitinated proteins were accumulated by freeze-thaw stress in the YF strain. In the cells with a laboratory strain background, treatment with the proteasome inhibitor MG132 or the deletion of each transcriptional activator gene for the proteasome genes ( RPN4 , PDR1 , or PDR3 ) led to marked impairment of model dough fermentation using the frozen cells. Based on these data, proteasomal degradation of freeze-thaw-damaged proteins may guarantee high cell viability and fermentation performance. We also found that the freeze-thaw stress-sensitive YF strain was heterozygous at the PDR3 locus, and one of the alleles (A148T/A229V/H336R/L541P) was shown to possess a dominant negative phenotype of slow fermentation. Removal of such responsible mutations could improve the freeze-thaw stress tolerance and the fermentation performance of baker's yeast strains, as well as other industrial S. cerevisiae strains. IMPORTANCE The development of freezing technology has enabled the long-term preservation and long-distance transport of foods and other agricultural products. Fresh yeast, however, is usually not frozen because the fermentation performance and/or the viability of individual cells is severely affected after thawing. Here, we demonstrate that proteasomal degradation of ubiquitinated proteins is an essential process in the freeze-thaw stress responses of S. cerevisiae . Upstream transcriptional activator genes for the proteasome components are responsible for the fermentation performance after freezing preservation. Thus, this study provides a potential linkage between freeze-thaw stress inputs and the transcriptional regulatory network that might be functionally conserved in higher eukaryotes. Elucidation of the molecular targets of freeze-thaw stress will contribute to advances in cryobiology, such as freezing preservation of human cells, tissues, and embryos for medical purposes and breeding of industrial microorganisms and agricultural crops that adapt well to low temperatures.


Sign in / Sign up

Export Citation Format

Share Document