early flowering
Recently Published Documents


TOTAL DOCUMENTS

641
(FIVE YEARS 163)

H-INDEX

42
(FIVE YEARS 6)

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 81
Author(s):  
Mario Wegher ◽  
Michele Faralli ◽  
Massimo Bertamini

Compact bunches have been often associated with higher susceptibility to Botrytis cinerea and therefore reduction in berry quality in grapevine. The objective of this study was to evaluate three management methods (early leaf removal, gibberellic acid, and their combination) for reducing bunch compactness in Vitis vinifera cv. Pinot gris trained in two different training systems with contrasting vigor (Guyot and pergola). Treatments were applied at BBCH 62 or BBCH 65 and yield components, total soluble solids, fruit set, and bunch compactness parameters were evaluated. Both treatments individually reduced berry number, mean bunches weight and bunches compactness as well as yield per vine when compared to control-untreated vines. However, no major differences were observed when both the treatments were applied in combination for Guyot or pergola although a higher reduction in yield was detected for Guyot and a significant increase in total soluble solids was observed in pergola. Our study suggests that intense leaf removal and gibberellic acid applied at early flowering can help reducing bunch compactness in Pinot gris and showing it in two training systems. In particular, leaf removal represents a valuable alternative to plant growth regulators (i.e., gibberellic acid) as applicable in organic viticulture.


2022 ◽  
Vol 12 ◽  
Author(s):  
Frédéric Bouché ◽  
Daniel P. Woods ◽  
Julie Linden ◽  
Weiya Li ◽  
Kevin S. Mayer ◽  
...  

The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Sang-Hyuck Park ◽  
Christopher S. Pauli ◽  
Eric L. Gostin ◽  
S. Kyle Staples ◽  
Dustin Seifried ◽  
...  

Abstract Backgrounds Cannabis sativa L. produces at least 120 cannabinoids. Although genetic variation is the main factor in cannabinoid production, the effects of short-term environmental stresses in the early flowering stage remains largely unknown. Methods To investigate the effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers, a hemp variety, Green-Thunder (5–8% CBD/mg of dry weight), was treated with mechanical damage, insect herbivory, extreme heat, or drought stress for 5–7 days during the first 2 weeks of flowering. Three hemp tissues, including flowers, leaves, and stems, were collected from hemp grown under these stress conditions at multiple time points during the first 2 weeks after transition to the short photoperiod and analyzed using high pressure liquid chromatography to quantify phytocannabinoids including cannabigerolic acid (CBGA), cannabigerol (CBG), cannabidiolic acid (CBDA), cannabidiol (CBD), Δ-tetrahydrocannabinolic acid (THCA), Δ-tetrahydrocannabinol (THC), and cannabinol (CBN). Results The 5 days of mechanical wounding did not affect the production of any of the cannabinoids during the initial stage of flowering. However, after 5 days of herbivore treatment, there was a significant difference in concentration between day 1 and day 6 of CBGA (control: 308 μg/g; treatment – 24 μg/g), CBG (control: 69 μg/g; treatment: 52 μg/g), and CBD (control: 755 μg/g; treatment: 194 μg/g) between the control and treatment plants. The 7 days of heat treatment at 45–50 oC significantly reduced the production of CBGA during this observed window (control: 206 μg/g; treatment: 182 μg/g) and CBG (control: 21 μg/g; treatment: − 112 μg/g). Notably, the largest change was observed after 7 days of drought stress, when plants showed a 40% greater accumulation of CBG (control: 336 μg/g; treatment: 622 μg/g), and a significant decrease (70–80%) in CBD (control: 1182 μg/g; treatment: 297 μg/g) and THC amounts (control: 3927 μg/g; treatment: 580 μg/g). Conclusions Although this observation is limited in the early flowering stage, the common field stresses are adequate to induce changes in the cannabinoid profiles, particularly drought stress being the most impactful stress for hemp flower initiation with the altering the cannabinoid production by decreasing CBD and THC accumulation while increasing CBG by 40%.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2537
Author(s):  
Noam Reznik ◽  
Bijaya Sharma Subedi ◽  
Shoshana Weizman ◽  
Gavriel Friesem ◽  
Nir Carmi ◽  
...  

The development of new cultivars is important for the profitability of the floriculture industry. There is a limited number of cultivars of Zantedeschia aethiopica, an iconic ornamental cut flower, garden plant, and potted plant, because of the incompatibility of interspecific crossings within the genus. Most present-day varieties are the result of spontaneous mutations or classical breeding within the species, followed by a long selection process. Here, Z. aethiopica mutants were generated by treating seeds with 100 Gy of X-ray radiation. The resulting putative mutants were selected based on particular flowering parameters and compared to nonirradiated, control plants. Over two growing seasons, characteristics such as early flowering, flower size and shape, yield, and response to soft-rot disease were monitored, and considerable variation was observed among the mutated lines. Out of 319 mutants, 20 lines were selected based on their phenotypes and then propagated and further analyzed. Within this group, only two phenotypes displayed at least five improved flowering properties under natural Mediterranean conditions. The rest displayed two to four desired combinations of flowering traits, some with great commercial potential.


Author(s):  
Noam Reznik ◽  
Bijaya Sharma Subedi ◽  
Shoshana Weisman ◽  
Gavriel Friesem ◽  
Nir Carmi ◽  
...  

The development of new cultivars is important for the profitability of the floriculture industry. There are a limited number of cultivars of Zantedeschia aethiopica, an iconic ornamental cut flower, garden plant, and potted plant, due to the incompatibility of interspecific crossings within the genus. Most present-day varieties are the result of spontaneous mutations or classical breeding within the species, followed by a long selection process. Breeders are very interested in the development of a time- and cost-effective method for producing new Z. aethiopica cultivars with novel characteristics. Here, Z. aethiopica mutants were generated by treating seeds with 100 Gy of X-ray radiation. The resulting putative mutants were selected based on particular flowering parameters and compared to non-irradiated, control plants. Over two growing seasons, characteristics such as early flowering, flower size and shape, yield and response to soft-rot disease were monitored and considerable variation was observed among the mutated lines. Out of 319 mutants, 20 lines were selected based on their phenotypes and then propagated and further analyzed. Within this group, only two phenotypes displayed at least five improved flowering properties under natural, Mediterranean conditions. The rest displayed two to four desired combinations of flowering traits, some with great commercial potential.


2021 ◽  
Author(s):  
Yu Jin ◽  
Maxim Ivanov ◽  
Anna Nelson Dittrich ◽  
Andrew Nelson ◽  
Sebastian Marquardt

Eukaryotic genomes give rise to thousands of long non-coding RNAs (lncRNAs), yet the purpose of lncRNAs remains largely enigmatic. Functional characterization of lncRNAs is challenging due to multiple orthogonal hypothesis for molecular activities of lncRNA loci. Here, we identified a flowering associated intergenic lncRNA (FLAIL) that represses flowering in Arabidopsis. An allelic series of flail loss-of-function mutants generated by CRISPR/Cas9 and T-DNA mutagenesis showed an early flowering phenotype. Gene expression analyses in flail mutants revealed differentially expressed genes linked to the regulation of flowering. A genomic rescue fragment of FLAIL introduced in flail mutants complemented gene expression defects and early flowering, consistent with trans-acting effects of the FLAIL RNA. Knock-down of FLAIL RNA levels using the artificial microRNA approach revealed an early flowering phenotype shared with genomic mutations, indicating a trans-acting role of FLAIL RNA in the repression of flowering time. Genome-wide detection of FLAIL-DNA interactions by ChIRP-seq suggested that FLAIL may directly bind genomic regions. FLAIL bound to genes involved in regulation of flowering that were differentially expressed in flail, consistent with the interpretation of FLAIL as a trans-acting lncRNA directly shaping gene expression. Our findings highlight FLAIL as a trans-acting lncRNA that affects flowering in Arabidopsis, likely through mediating transcriptional regulation of genes directly bound by FLAIL.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weilin Gao ◽  
Liman Zhang ◽  
Jiurui Wang ◽  
Zhiguo Liu ◽  
Yao Zhang ◽  
...  

Abstract Background SEPALLATA3 (SEP3), which is conserved across various plant species, plays essential and various roles in flower and fruit development. However, the regulatory network of the role of SEP3 in flowering time at the molecular level remained unclear. Results Here, we investigated that SEP3 in Ziziphus jujuba Mill. (ZjSEP3) was expressed in four floral organs and exhibited strong transcriptional activation activity. ZjSEP3 transgenic Arabidopsis showed an early-flowering phenotype and altered the expression of some genes related to flowering. Among them, the expression of LATE ELONGATED HYPOCOTYL (AtLHY), the key gene of circadian rhythms, was significantly suppressed. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assays (EMSAs) further verified that ZjSEP3 inhibited the transcription of AtLHY by binding to the CArG-boxes in its promoter. Moreover, ZjSEP3 also could bind to the ZjLHY promoter and the conserved binding regions of ZjSEP3 were found in the LHY promoter of various plant species. The ectopic regulatory pathway of ZjSEP3-AtLHY was further supported by the ability of 35S::AtLHY to rescue the early-flowering phenotype in ZjSEP3 transgenic plants. In ZjSEP3 transgenic plants, total chlorophyll content and the expression of genes involved in chlorophyll synthesis increased during vegetative stages, which should contribute to its early flowering and relate to the regulatory of AtLHY. Conclusion Overall, ZjSEP3-AtLHY pathway represents a novel regulatory mechanism that is involved in the regulation of flowering time.


2021 ◽  
Author(s):  
Garima Yadav ◽  
Deepanshu Jayaswal ◽  
Kuldip Jayaswall ◽  
Abhishek Bhandawat ◽  
ArvindNath Singh ◽  
...  

Abstract Chickpea is the fourth most important legume crop contributing 3.1% to the total legume production and rich source of proteins, minerals and vitamins. Genetic diversity of wild and elite cultivar is quintessential for variety improvement. Determination of genetic diversity is more reliable and accurate, therefore, commonly used. In the present study, we analyzed the genetic diversity, population structure, cross-species transferability and allelic richness in 50 chickpea collection using 23 ISSR markers. The observed parameters such as allele number varied from 3 to 16,and polymorphic information content (PIC) varied from 0.15 to 0.4988, respectively. Further, range of allele size varied from 150 to 1600 bp, which shows the significance of ISSR markers for chickpea germplasm characterization. On the basis of ISSR marker genotypic data, dendrogram was constructed which divides these 50 chickpea in group I and II showing the reliability of ISSR markers. Among 50 chickpea, the accession P 74-1 is in group I and rest are in group II. Further we made mini-core collection of 15 diverse chickpea and sub-grouped them. Dendrogram, PCA, Dissimilarity matrix and Bayesian model based genetic clustering of 50 chickpea germplasms revealed that P 74-1 and P 1883are very diverse chickpea accession. Further selected 15 diverse chickpea screened for early flowering and high seed germination. Among 15 diversechickpea germplasms P 1857-1 and P 3971 has early flowering and high seed germination compared to P 1883 and other germplasm. Characterization of these diverse chickpea for early flowering and high seed germinationwould help in reducing crop duration and enhancing seed qualities. Utilization of these ISSRs markers in diversity analysis and population structure characterization of 50 chickpea germplasm suggests their wider efficacy for molecular breeding ofearly flowering and high seed germination.


Sign in / Sign up

Export Citation Format

Share Document