scholarly journals A New Modified Three-Term Conjugate Gradient Method with Sufficient Descent Property and Its Global Convergence

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Bakhtawar Baluch ◽  
Zabidin Salleh ◽  
Ahmad Alhawarat ◽  
U. A. M. Roslan

A new modified three-term conjugate gradient (CG) method is shown for solving the large scale optimization problems. The idea relates to the famous Polak-Ribière-Polyak (PRP) formula. As the numerator of PRP plays a vital role in numerical result and not having the jamming issue, PRP method is not globally convergent. So, for the new three-term CG method, the idea is to use the PRP numerator and combine it with any good CG formula’s denominator that performs well. The new modification of three-term CG method possesses the sufficient descent condition independent of any line search. The novelty is that by using the Wolfe Powell line search the new modification possesses global convergence properties with convex and nonconvex functions. Numerical computation with the Wolfe Powell line search by using the standard test function of optimization shows the efficiency and robustness of the new modification.

Author(s):  
Amina Boumediene ◽  
Tahar Bechouat ◽  
Rachid Benzine ◽  
Ghania Hadji

The nonlinear Conjugate gradient method (CGM) is a very effective way in solving large-scale optimization problems. Zhang et al. proposed a new CG coefficient which is defined by [Formula: see text]. They proved the sufficient descent condition and the global convergence for nonconvex minimization in strong Wolfe line search. In this paper, we prove that this CG coefficient possesses sufficient descent conditions and global convergence properties under the exact line search.


2011 ◽  
Vol 18 (9) ◽  
pp. 1249-1253 ◽  
Author(s):  
Mehdi Dehghan ◽  
Masoud Hajarian

The conjugate gradient method is one of the most useful and the earliest-discovered techniques for solving large-scale nonlinear optimization problems. Many variants of this method have been proposed, and some are widely used in practice. In this article, we study the descent Dai–Yuan conjugate gradient method which guarantees the sufficient descent condition for any line search. With exact line search, the introduced conjugate gradient method reduces to the Dai–Yuan conjugate gradient method. Finally, a global convergence result is established when the line search fulfils the Goldstein conditions.


2018 ◽  
Vol 7 (3.28) ◽  
pp. 54
Author(s):  
Yasir Salih ◽  
Mustafa Mamat ◽  
Mohd Rivaie ◽  
Abdelrhaman Abashar ◽  
Mohamad Afendee Mohamed

Conjugate Gradient (CG) method is a very useful technique for solving large-scale nonlinear optimization problems. In this paper, we propose a new formula for 12خ²k"> , which is a hybrid of PRP and WYL methods. This method possesses sufficient descent and global convergence properties when used with exact line search. Numerical results indicate that the new formula has higher efficiency compared with other classical CG methods. 


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmad Alhawarat ◽  
Mustafa Mamat ◽  
Mohd Rivaie ◽  
Zabidin Salleh

Conjugate gradient (CG) method is an interesting tool to solve optimization problems in many fields, such as design, economics, physics, and engineering. In this paper, we depict a new hybrid of CG method which relates to the famous Polak-Ribière-Polyak (PRP) formula. It reveals a solution for the PRP case which is not globally convergent with the strong Wolfe-Powell (SWP) line search. The new formula possesses the sufficient descent condition and the global convergent properties. In addition, we further explained about the cases where PRP method failed with SWP line search. Furthermore, we provide numerical computations for the new hybrid CG method which is almost better than other related PRP formulas in both the number of iterations and the CPU time under some standard test functions.


Author(s):  
Amira Hamdi ◽  
Badreddine Sellami ◽  
Mohammed Belloufi

In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems, the conjugate gradient parameter [Formula: see text] is computed as a convex combination of [Formula: see text] and [Formula: see text]. Under the wolfe line search, we prove the sufficient descent and the global convergence. Numerical results are reported to show the effectiveness of our procedure.


2019 ◽  
Vol 38 (7) ◽  
pp. 227-231
Author(s):  
Huda Younus Najm ◽  
Eman T. Hamed ◽  
Huda I. Ahmed

In this study, we propose a new parameter in the conjugate gradient method. It is shown that the new method fulfils the sufficient descent condition with the strong Wolfe condition when inexact line search has been used. The numerical results of this suggested method also shown that this method outperforms to other standard conjugate gradient method.


2013 ◽  
Vol 30 (01) ◽  
pp. 1250043
Author(s):  
LIANG YIN ◽  
XIONGDA CHEN

The conjugate gradient method is widely used in unconstrained optimization, especially for large-scale problems. Recently, Zhang et al. proposed a three-term PRP method (TTPRP) and a three-term HS method (TTHS), both of which can produce sufficient descent conditions. In this paper, the global convergence of the TTPRP and TTHS methods is studied, in which the line search procedure is replaced by a fixed formula of stepsize. This character is of significance when the line search is expensive in some particular applications. In addition, relevant computational results are also presented.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Ahmad Alhawarat ◽  
Zabidin Salleh

Conjugate gradient (CG) method is used to find the optimum solution for the large scale unconstrained optimization problems. Based on its simple algorithm, low memory requirement, and the speed of obtaining the solution, this method is widely used in many fields, such as engineering, computer science, and medical science. In this paper, we modified CG method to achieve the global convergence with various line searches. In addition, it passes the sufficient descent condition without any line search. The numerical computations under weak Wolfe-Powell line search shows that the efficiency of the new method is superior to other conventional methods.


Author(s):  
Chergui Ahmed ◽  
Bouali Tahar

<span>The conjugate gradient method has played a special role in   solving large-scale unconstrained Optimization problems. In this paper, we propose a new family of CG coefficients that   possess    sufficient descent conditions and global convergence properties this CG method is similar to (Wei et al) [7].  Global convergence   result is established under Strong Wolf-Powell line search. Numerical results to find  the  optimum solution of some test  functions show the   new proposed formula has the best result in CPU time and the number of iterations, and the number of gradient evaluations when it comparing with FR, PRP, DY, and WYL </span>


Lately, many large-scale unconstrained optimization problems rely upon nonlinear conjugate gradient (CG) methods. Many areas such as engineering, and computer science have benefited because of its simplicity, fast and low memory requirements. Many modified coefficients have appeared recently, all of which to improve these methods. This paper considers an extension conjugate gradient method of PolakRibière-Polyak using exact line search to show that it holds for some properties such as sufficient descent and global convergence. A set of 113 test problems is used to evaluate the performance of the proposed method and get compared to other existing methods using the same line search.


Sign in / Sign up

Export Citation Format

Share Document