scholarly journals Unchained Cellular Obfuscation Areas for Location Privacy in Continuous Location-Based Service Queries

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Jia-Ning Luo ◽  
Ming-Hour Yang

To access location-based service (LBS) and query surrounding points of interest (POIs), smartphone users typically use built-in positioning functions of their phones when traveling at unfamiliar places. However, when a query is submitted, personal information may be leaked when they provide their real location. Current LBS privacy protection schemes fail to simultaneously consider real map conditions and continuous querying, and they cannot guarantee privacy protection when the obfuscation algorithm is known. To provide users with secure and effective LBSs, we developed an unchained regional privacy protection method that combines query logs and chained cellular obfuscation areas. It adopts a multiuser anonymizer architecture to prevent attackers from predicting user travel routes by using background information derived from maps (e.g., traffic speed limits). The proposed scheme is completely transparent to users when performing continuous location-based queries, and it combines the method with actual road maps to generate unchained obfuscation areas that conceal the actual locations of users. In addition to using a caching approach to enhance performance, the proposed scheme also considers popular tourist POIs to enhance the cache data hit ratio and query performance.

2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668542 ◽  
Author(s):  
Di Xue ◽  
Li-Fa Wu ◽  
Hua-Bo Li ◽  
Zheng Hong ◽  
Zhen-Ji Zhou

Location publication in check-in services of geo-social networks raises serious privacy concerns due to rich sources of background information. This article proposes a novel destination prediction approach Destination Prediction specially for the check-in service of geo-social networks, which not only addresses the “data sparsity problem” faced by common destination prediction approaches, but also takes advantages of the commonly available background information from geo-social networks and other public resources, such as social structure, road network, and speed limits. Further considering the Destination Prediction–based attack model, we present a location privacy protection method Check-in Deletion and framework Destination Prediction + Check-in Deletion to help check-in users detect potential location privacy leakage and retain confidential locational information against destination inference attacks without sacrificing the real-time check-in precision and user experience. A new data preprocessing method is designed to construct a reasonable complete check-in subset from the worldwide check-in data set of a real-world geo-social network without loss of generality and validity of the evaluation. Experimental results show the great prediction ability of Destination Prediction approach, the effective protection capability of Check-in Deletion method against destination inference attacks, and high running efficiency of the Destination Prediction + Check-in Deletion framework.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882239 ◽  
Author(s):  
Zhimin Li ◽  
Haoze Lv ◽  
Zhaobin Liu

With the development of Internet of Things, many applications need to use people’s location information, resulting in a large amount of data need to be processed, called big data. In recent years, people propose many methods to protect privacy in the location-based service aspect. However, existing technologies have poor performance in big data area. For instance, sensor equipments such as smart phones with location record function may submit location information anytime and anywhere which may lead to privacy disclosure. Attackers can leverage huge data to achieve useful information. In this article, we propose noise-added selection algorithm, a location privacy protection method that satisfies differential privacy to prevent the data from privacy disclosure by attacker with arbitrary background knowledge. In view of Internet of Things, we maximize the availability of data and algorithm when protecting the information. In detail, we filter real-time location distribution information, use our selection mechanism for comparison and analysis to determine privacy-protected regions, and then perform differential privacy on them. As shown in the theoretical analysis and the experimental results, the proposed method can achieve significant improvements in security, privacy, and complete a perfect balance between privacy protection level and data availability.


2018 ◽  
Vol 189 ◽  
pp. 10013
Author(s):  
Tao Feng ◽  
Xudong Wang ◽  
Xinghua Li

Location based Service (the Location - -based Service, LBS) is a System is to transform the existing mobile communication network, wireless sensor networks, and Global Positioning System (Global Positioning System, GPS) with the combination of information Service mode, the general improvement in Positioning technology and the high popularity of mobile intelligent terminals, led to the growing market of LBS. This article from the perspective of LBS service privacy security, mainly studies the LBS location privacy protection scheme based on cipher text search, in LBS service location privacy and search information privacy issues, focus on to design the scheme, based on the cryptography in LBS service privacy protection issues in the process, this paper fully and secret cipher text search characteristics, design a new privacy protection of LBS service model, and expounds the system structure and working principle of model, defines the security properties of the privacy protection model and security model, Under the specific security assumptions, the new location privacy protection scheme based on lbspp-bse (LBS location privacy protection based on searchable encryption) is implemented.


2021 ◽  
Vol 2138 (1) ◽  
pp. 012010
Author(s):  
Xiaobei Xu ◽  
Huaju Song ◽  
Kai Zhang ◽  
Liwen Chen ◽  
Yuwen Qian

Abstract To resolve the communication overhead problem of anonymous users, we propose a location privacy protection method based on the cache technology. In particular, we first place the cache center on edge server nodes to reduce interaction between servers and users. In this way, the risk of privacy leaks can be reduced. Furthermore, to improve the caching hit rate, a prediction system based on Markov chain is designed to protect the trajectory privacy of mobile users. Simulations show that the algorithm can protect the privacy of users and reduce the transmission delay.


Sign in / Sign up

Export Citation Format

Share Document