scholarly journals The Location-Routing Problem with Full Truckloads in Low-Carbon Supply Chain Network Designing

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Cheng Chen ◽  
Rongzu Qiu ◽  
Xisheng Hu

In recent years, low-carbon supply chain network design has been the focus of studies as the development of low-carbon economy. The location-routing problem with full truckloads (LRPFT) is investigated in this paper, which extends the existing studies on the LRP to full truckloads problem within the regional many-to-many raw material supply network. A mathematical model with dual objectives of minimizing total cost and environmental effects simultaneously is developed to determine the number and locations of facilities and optimize the flows among different kinds of nodes and routes of trucks as well. A novel multiobjective hybrid approach named NSGA-II-TS is proposed by combining a known multiobjective algorithm, NSGA-II, and a known heuristics, Tabu Search (TS). A chromosome presentation based on natural number and modified partially mapping crossover operator for the LRPFT are designed. Finally, the computational effectiveness of the hybrid approach is validated by the numerical results and a practical case study is applied to demonstrate the tradeoff between total cost and CO2 emission in the LRPFT.

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Longlong Leng ◽  
Yanwei Zhao ◽  
Zheng Wang ◽  
Hongwei Wang ◽  
Jingling Zhang

In this paper, we consider a variant of the location-routing problem (LRP), namely, the regional low-carbon LRP with reality constraint conditions (RLCLRPRCC), which is characterized by clients and depots that located in nested zones with different speed limits. The RLCLRPRCC aims at reducing the logistics total cost and carbon emission and improving clients satisfactory by replacing the travel distance/time with fuel consumption and carbon emission costs under considering heterogeneous fleet, simultaneous pickup and delivery, and hard time windows. Aiming at this project, a novel approach is proposed: hyperheuristic (HH), which manipulates the space, consisted of a fixed pool of simple operators such as “shift” and “swap” for directly modifying the space of solutions. In proposed framework of HH, a kind of shared mechanism-based self-adaptive selection strategy and self-adaptive acceptance criterion are developed to improve its performance, accelerate convergence, and improve algorithm accuracy. The results show that the proposed HH effectively solves LRP/LRPSPD/RLCLRPRCC within reasonable computing time and the proposed mathematical model can reduce 2.6% logistics total cost, 27.6% carbon emission/fuel consumption, and 13.6% travel distance. Additionally, several managerial insights are presented for logistics enterprises to plan and design the distribution network by extensively analyzing the effects of various problem parameters such as depot cost and location, clients’ distribution, heterogeneous vehicles, and time windows allowance, on the key performance indicators, including fuel consumption, carbon emissions, operational costs, travel distance, and time.


2020 ◽  
Vol 39 (3) ◽  
pp. 3259-3273
Author(s):  
Nasser Shahsavari-Pour ◽  
Najmeh Bahram-Pour ◽  
Mojde Kazemi

The location-routing problem is a research area that simultaneously solves location-allocation and vehicle routing issues. It is critical to delivering emergency goods to customers with high reliability. In this paper, reliability in location and routing problems was considered as the probability of failure in depots, vehicles, and routs. The problem has two objectives, minimizing the cost and maximizing the reliability, the latter expressed by minimizing the expected cost of failure. First, a mathematical model of the problem was presented and due to its NP-hard nature, it was solved by a meta-heuristic approach using a NSGA-II algorithm and a discrete multi-objective firefly algorithm. The efficiency of these algorithms was studied through a complete set of examples and it was found that the multi-objective discrete firefly algorithm has a better Diversification Metric (DM) index; the Mean Ideal Distance (MID) and Spacing Metric (SM) indexes are only suitable for small to medium problems, losing their effectiveness for big problems.


Sign in / Sign up

Export Citation Format

Share Document