scholarly journals A Hybrid Smoothed Finite Element Method for Predicting the Sound Field in the Enclosure with High Wave Numbers

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Haitao Wang ◽  
Xiangyang Zeng ◽  
Ye Lei

Wave-based methods for acoustic simulations within enclosures suffer the numerical dispersion and then usually have evident dispersion error for problems with high wave numbers. To improve the upper limit of calculating frequency for 3D problems, a hybrid smoothed finite element method (hybrid SFEM) is proposed in this paper. This method employs the smoothing technique to realize the reduction of the numerical dispersion. By constructing a type of mixed smoothing domain, the traditional node-based and face-based smoothing techniques are mixed in the hybrid SFEM to give a more accurate stiffness matrix, which is widely believed to be the ultimate cause for the numerical dispersion error. The numerical examples demonstrate that the hybrid SFEM has better accuracy than the standard FEM and traditional smoothed FEMs under the condition of the same basic elements. Moreover, the hybrid SFEM also has good performance on the computational efficiency. A convergence experiment shows that it costs less time than other comparison methods to achieve the same computational accuracy.

2019 ◽  
Vol 17 (02) ◽  
pp. 1850127 ◽  
Author(s):  
X. Cui ◽  
X. Han ◽  
S. Y. Duan ◽  
G. R. Liu

The smoothed finite element method (S-FEM) has been developed recent years and is increasingly used for stress analysis for engineering design of structures, due to its high computational accuracy and outstanding robustness in against mesh distortion. However, there is currently no commercial S-FEM software package available for convenient engineering applications. This paper aims to integrate S-FEM into the [Formula: see text] software, because it is most widely used in engineering analyses and well integrated in computer aided engineering (CAE). From a family of S-FEM models, the cell-based finite element method (CS-FEM) is chosen to be implemented in ABAQUS, because a smoothing cell in the CS-FEM involves only one element, and hence the implementation can be achieved via the use of the user-defined element library (UEL). Since only nodal displacement results can be extracted when UEL subroutine is used in ABAQUS, a post-processing program is also developed to compute nodal strains/stresses and strain energy results that are useful in structure analysis and CAE. Our CS-FEM UEL is validated using four numerical examples under plane stress conditions. Compared with standard ABAQUS, the CS-FEM in ABAQUS improves the solution accuracy remarkably, and we have also confirmed the robustness of CS-FEM against heavily distorted meshes.


2016 ◽  
Vol 168 ◽  
pp. 16-29 ◽  
Author(s):  
Eric Li ◽  
Junning Chen ◽  
Zhongpu Zhang ◽  
Jianguang Fang ◽  
G.R. Liu ◽  
...  

2015 ◽  
Vol 07 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Z. C. He ◽  
G. Y. Zhang ◽  
L. Deng ◽  
Eric Li ◽  
G. R. Liu

The node-based smoothed finite element method (NS-FEM) proposed recently has shown very good properties in solid mechanics, such as providing much better gradient solutions. In this paper, the topology optimization design of the continuum structures under static load is formulated on the basis of NS-FEM. As the node-based smoothing domain is the sub-unit of assembling stiffness matrix in the NS-FEM, the relative density of node-based smoothing domains serves as design variables. In this formulation, the compliance minimization is considered as an objective function, and the topology optimization model is developed using the solid isotropic material with penalization (SIMP) interpolation scheme. The topology optimization problem is then solved by the optimality criteria (OC) method. Finally, the feasibility and efficiency of the proposed method are illustrated with both 2D and 3D examples that are widely used in the topology optimization design.


2018 ◽  
Vol 30 (3) ◽  
pp. 416-437 ◽  
Author(s):  
Liming Zhou ◽  
Ming Li ◽  
Bingkun Chen ◽  
Feng Li ◽  
Xiaolin Li

In this article, an inhomogeneous cell-based smoothed finite element method (ICS-FEM) was proposed to overcome the over-stiffness of finite element method in calculating transient responses of functionally graded magneto-electro-elastic structures. The ICS-FEM equations were derived by introducing gradient smoothing technique into the standard finite element model; a close-to-exact system stiffness was also obtained. In addition, ICS-FEM could be carried out with user-defined sub-routines in the business software now available conveniently. In ICS-FEM, the parameters at Gaussian integration point were adopted directly in the creation of shape functions; the computation process is simplified, for the mapping procedure in standard finite element method is not required; this also gives permission to utilize poor quality elements and few mesh distortions during large deformation. Combining with the improved Newmark scheme, several numerical examples were used to prove the accuracy, convergence, and efficiency of ICS-FEM. Results showed that ICS-FEM could provide solutions with higher accuracy and reliability than finite element method in analyzing models with Rayleigh damping. Such method is also applied to complex structures such as typical micro-electro-mechanical system–based functionally graded magneto-electro-elastic energy harvester. Hence, ICS-FEM can be a powerful tool for transient problems of functionally graded magneto-electro-elastic models with damping which is of great value in designing intelligence structures.


Sign in / Sign up

Export Citation Format

Share Document