optimality criteria
Recently Published Documents


TOTAL DOCUMENTS

633
(FIVE YEARS 138)

H-INDEX

35
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 505
Author(s):  
Oleksandr Ivchenko ◽  
Vitalii Ivanov ◽  
Justyna Trojanowska ◽  
Dmytro Zhyhylii ◽  
Olaf Ciszak ◽  
...  

The paper presents a constructing methodology for a modern approach to tools selection and solving the problem of assigning optimal cutting parameters for specific production conditions. The mathematical formulation determining the extreme values of the technological process optimality criteria is obtained. A system of technical and economic quality indicators for cutting tools is proposed. This system allows principles’ implementation of decentralization and interoperability “Industry 4.0” via finite element modeling of the cutting process based on solving the problem of orthogonal free cutting modeling. The proposed methodology further usage is possible by creating a standardized database on the parameters of the tool: the adhesive component of the friction cutting coefficient for processing of a specific pair of cutting and tool materials (or tool coating material) and the impacts of the cutting-edge radius on cutting efficiency of a particular material.


Author(s):  
Oleksandr Ustynenko ◽  
Nickita Levin ◽  
Oleksiy Bondarenko ◽  
Miroslav Bošanský ◽  
Roman Protasov ◽  
...  

Reducing the mass and dimensions of gears is an actual task of modern mechanical engineering. One of the perspective ways to solve it is the use of gearing with a convex-concave contact of the teeth. Therefore, the study is devoted to the development of methods for the optimal design of cylindrical gears with convex-concave contact of the working surfaces. Optimality criteria: minimum contact stresses and (or) minimum relative sliding velocities, taking into account design, geometrical and technological constraints. C-C gearing was chosen as the object of research. It was proposed by the Slovak scientists M. Boshanski and M. Veresh. An objective function is constructed for the case of minimizing contact stresses. The optimality criterion is formulated as follows: contact stresses σH in the mesh must take the minimum possible value when all constraints are met. An objective function is also constructed for the case of minimizing the relative sliding velocities of profiles. The optimality criterion is formulated as follows: the relative sliding s velocities of profiles λ at the extreme points of mesh must take the minimum possible value when all the constraints are met. Variables planning are defined. These are pressure angle at the pole αС, the curvature radius at the upper part of contact path rkh, and the curvature radius at the lower part of contact path rkd. A method for solving the problem of optimal design is chosen. The method of probing the space of design parameters was chosen from all the variety. The points of the LPτ-sequence are used as test points. The method allows you to operate with a significant number of parameters – up to 51, provides a sufficiently large number of evenly distributed test points – up to 220. In further studies, it is planned to form a system of constraints on variables planning, to develop methods and algorithms for solving the problem. Also carry out test and verification calculations to confirm and evaluate the theoretical results. Keywords: gear, convex-concave contact, optimal design, objective function, variables planning


Author(s):  
Yulia L. Korotkova ◽  
◽  
Yury A. Mesentsev ◽  

The paper discusses the problem of optimal regulation of aircraft assignments for airline flights. Due to the fact that the activities of the airline are subject to changes caused by both external and internal environment, the planned schedule needs continuous management and control. In the event when the actual flight schedule deviates from the planned one, it is necessary to promptly make a decision on adjusting (restoring) the schedule and reassigning aircraft. Operational schedule management involves making adjustments to the current schedule from a depth of several hours to several days. The solution to the problem is to determine the unambiguous correspondence of flights and specific aircraft subject to maximizing the likelihood of meeting production targets and observing a number of restrictions. The task of managing airline schedules belongs to the class of scheduling optimization problems for parallel-sequential systems studied within the scheduling theory. It is NP-hard and requires the development of computationally efficient solution algorithms. However, the issue of choosing criteria for the optimization problem deserves special attention, since the correct choice plays an essential role in terms of assessing the effectiveness of decision-making. In the theory of decision-making, no general method for choosing the optimality criteria has been found. The definition of the target criterion depends on the expectations of the production. Within the framework of this paper, an original criterion is proposed for constructing an optimal solution to the discrete problem of managing aircraft assignments, the main idea of which is to find a balance between the duration of the schedule and the number of flights with a negative deviation from the planned schedule by assessing the level of punctuality violation risk. The paper gives a detailed concept of punctuality, describes an approach to assessing the level of risk, and also proposes an original formal formulation of the task of operational management of aircraft assignments based on the criterion of minimizing the risk of violation of flight punctuality.


Author(s):  
Mustafa Kamal ◽  
Ahmadur Rahman ◽  
Shazia Zarrin ◽  
Haneefa Kausar

Accelerated life tests (ALTs) are designed to investigate the lifetime of extraordinarily reliable things by exposing them to increased stress levels of stressors such as temperature, voltage, pressure, and so on, in order to cause early breakdowns. The Nadarajah-Haghighi (NH) distribution is of tremendous importance and practical relevance in many real-life scenarios due to its attractive qualities such as its density function always has a zero mode and its hazard rate function can be increasing, decreasing, or constant. In this article, the NH distribution is considered as a lifetime distribution under the step stress partially accelerated life testing (SSPALT) model with adaptive type II progressively hybrid censored samples. The unknown model parameters and acceleration factors are estimated using maximum likelihood estimation (MLE) method assuming that the impact of stress change in SSPALT is explained by a tampered random variable (TRV) model. The Fisher information matrix, which is based on large sample theory, is also constructed and used to produce the approximate confidence intervals (ACIs). Furthermore, two potential optimum test strategies based on the A and D optimality criteria are evaluated. To investigate the performance of the proposed methodologies and statistical assumptions established in this article, extensive simulations using R software have been conducted. Finally, to further illustrate the suggested approach, a real-world example based on the times between breakdowns for a repairable system has been provided.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7035
Author(s):  
Łukasz Komsta ◽  
Katarzyna Wicha-Komsta ◽  
Tomasz Kocki

This is an introductory tutorial and review about the uncertainty problem in chromatographic calibration. It emphasizes some unobvious, but important details influencing errors in the calibration curve estimation, uncertainty in prediction, as well as the connections and dependences between them, all from various perspectives of uncertainty measurement. Nonuniform D-optimal designs coming from Fedorov theorem are computed and presented. As an example, all possible designs of 24 calibration samples (3–8, 4–6, 6–4, 8–3 and 12–2, both uniform and D-optimal) are compared in context of many optimality criteria. It can be concluded that there are only two independent (orthogonal, but slightly complex) trends in optimality of these designs. The conclusions are important, as the uniform designs with many concentrations are not the best choices, contrary to some intuitive perception. Nonuniform designs are visibly better alternative in most calibration cases.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mark L. Latash

Biological systems differ from the inanimate world in their behaviors ranging from simple movements to coordinated purposeful actions by large groups of muscles, to perception of the world based on signals of different modalities, to cognitive acts, and to the role of self-imposed constraints such as laws of ethics. Respectively, depending on the behavior of interest, studies of biological objects based on laws of nature (physics) have to deal with different salient sets of variables and parameters. Understanding is a high-level concept, and its analysis has been linked to other high-level concepts such as “mental model” and “meaning”. Attempts to analyze understanding based on laws of nature are an example of the top-down approach. Studies of the neural control of movements represent an opposite, bottom-up approach, which starts at the interface with classical physics of the inanimate world and operates with traditional concepts such as forces, coordinates, etc. There are common features shared by the two approaches. In particular, both assume organizations of large groups of elements into task-specific groups, which can be described with only a handful of salient variables. Both assume optimality criteria that allow the emergence of families of solutions to typical tasks. Both assume predictive processes reflected in anticipatory adjustments to actions (motor and non-motor). Both recognize the importance of generating dynamically stable solutions. The recent progress in studies of the neural control of movements has led to a theory of hierarchical control with spatial referent coordinates for the effectors. This theory, in combination with the uncontrolled manifold hypothesis, allows quantifying the stability of actions with respect to salient variables. This approach has been used in the analysis of motor learning, changes in movements with typical and atypical development and with aging, and impaired actions by patients with various neurological disorders. It has been developed to address issues of kinesthetic perception. There seems to be hope that the two counter-directional approaches will meet and result in a single theoretical scheme encompassing biological phenomena from figuring out the best next move in a chess position to activating motor units appropriate for implementing that move on the chessboard.


2021 ◽  
Author(s):  
Cole A Lyman ◽  
Spencer Richman ◽  
Matthew C. Morris ◽  
Hongbao Cao ◽  
Antony Scerri ◽  
...  

Modeling of systems for which data is limited often leads to underdetermined model identification problems, where multiple candidate models are equally adherent to data. In such situations additional optimality criteria are useful in model selection apart from the conventional minimization of error and model complexity. This work presents the attractor landscape as a domain for novel model selection criteria, where the number and location of attractors impact desirability. A set of candidate models describing immune response dynamics to SARS-CoV infection is used as an example for model selection based on features of the attractor landscape. Using this selection criteria, the initial set of 18 models is ranked and reduced to 7 models that have a composite objective value with a p-value < 0.05. Additionally, the impact of pharmacologically induced remolding of the attractor landscape is presented.


Sign in / Sign up

Export Citation Format

Share Document