scholarly journals The Mobile Water Quality Monitoring System Based on Low-Power Wide Area Network and Unmanned Surface Vehicle

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wei Chen ◽  
Xiao Hao ◽  
Kui Yan ◽  
JianRong Lu ◽  
Jin Liu ◽  
...  

The increasingly serious water pollution problem makes efficient and information-based water quality monitoring equipment particularly important. To cover the shortcomings of existing water quality monitoring methods, in this paper, a mobile water quality monitoring system was designed based on LoRa communication and USV. In this system, the USV carrying water quality sensors was used as a platform. Firstly, the LoRa network is used to monitor water quality over a large area. Secondly, the unmanned surface vessel controls the position error within ±20 m and the velocity error within ±1 m/s based on the Kalman filter algorithm. Thirdly, the genetic algorithm based on improved crossover operators is used to determine the optimal operational path, which effectively improves the iterative efficiency of the classical genetic algorithm and avoids falling into local convergence. In the actual water surface test, its packet loss probability within a working range of 1.5 km was below 10%, and the USV could accurately navigate according to the preset optimal path. The test results proved that the system has a relatively large working range and high efficiency. This study is of high significance in water pollution prevention and ecological protection.

Author(s):  
Seungjun Baek ◽  
Chanyeong Seong ◽  
Sangho Choe ◽  
Yeonsu Park ◽  
Minsu Kim

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4118
Author(s):  
Leonardo F. Arias-Rodriguez ◽  
Zheng Duan ◽  
José de Jesús Díaz-Torres ◽  
Mónica Basilio Hazas ◽  
Jingshui Huang ◽  
...  

Remote Sensing, as a driver for water management decisions, needs further integration with monitoring water quality programs, especially in developing countries. Moreover, usage of remote sensing approaches has not been broadly applied in monitoring routines. Therefore, it is necessary to assess the efficacy of available sensors to complement the often limited field measurements from such programs and build models that support monitoring tasks. Here, we integrate field measurements (2013–2019) from the Mexican national water quality monitoring system (RNMCA) with data from Landsat-8 OLI, Sentinel-3 OLCI, and Sentinel-2 MSI to train an extreme learning machine (ELM), a support vector regression (SVR) and a linear regression (LR) for estimating Chlorophyll-a (Chl-a), Turbidity, Total Suspended Matter (TSM) and Secchi Disk Depth (SDD). Additionally, OLCI Level-2 Products for Chl-a and TSM are compared against the RNMCA data. We observed that OLCI Level-2 Products are poorly correlated with the RNMCA data and it is not feasible to rely only on them to support monitoring operations. However, OLCI atmospherically corrected data is useful to develop accurate models using an ELM, particularly for Turbidity (R2=0.7). We conclude that remote sensing is useful to support monitoring systems tasks, and its progressive integration will improve the quality of water quality monitoring programs.


2019 ◽  
Author(s):  
Jeba Anandh S ◽  
Anandharaj M ◽  
Aswinrajan J ◽  
Karankumar G ◽  
Karthik P

2020 ◽  
Vol 1624 ◽  
pp. 042057
Author(s):  
Xueying Wang ◽  
Yanli Feng ◽  
Jiajun Sun ◽  
Dashe Li ◽  
Huanhai Yang

Author(s):  
Kamalanathan Shanmugam ◽  
Muhammad Ehsan Rana ◽  
Roshenpal Singh Jaspal Singh

Sign in / Sign up

Export Citation Format

Share Document